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Abstract

The main goal of this paper is to discuss the representation
theory, to explain how rotations in R™ space are induced by the

action of a certain group, a Lie algebra representation as map of
Lic algebras preserving the Lic bracket. In way that generalizes
the action of the unit complex numbers unitary group, on R? and
special unitary group, on R>. We expressed in terms of

multiplication in a large algebra containing both the group
spin(n) and R".
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Introduction:-

A (complex) representation (7, V) of a group G on a complex
vector space V with chosen basis identifying ¥ =C") is a
homomorphism

m:G — GL(n,C)
This basically a set of n by n matrices, one for each group
element, satisfy the multiplication rules of the group elements, n
is called the dimension of the representation. The groups G we
are interested in will be examples of what mathematicians call "
Lie group".
For a representation  and group elements g that are close to the
identity, one can use exponentiation to write n(g) € GL(n, C)as

n(g) = e”

where A is also a matrix, close to zero matrix.
Given representations 7; and 7, of dimensions n;, and n,, one
can define another representation of dimensions n, + n, called

direct sum of the two representations, denoted by 7 @7, this
representation is given by the homomorphism

0

(?r,@frz):ge(}—)[ﬁ'(g) ]

0 5 (g)

In other words, one just takes as representations matrices block-

diagonal matrices with 74 and 7, giving the blocks.

To understand the representations of a group G one proceeds by
first identifying the irreducible ones, those that cannot be
decomposed into two representations of lower dimension.

A representation m is called irreducible if it cannot be put in the

form 71, @, for 7, and 7@, of dimension greater than zero.
[1] The Group U(1)and its Representations:-
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The elements of group U(1) are points on the unit circle, which

can be label by unit complex number e'?, for § € R Note that
6 and 6+ 2mn label the same group element: Multiplication of
group elements is just complex multiplication which by
properties of exponential satisfies e'f1¢1%2 = g(61762),
- So in terms of angle © the group law is just addition
(mod 2m).
- Since U(1) is commutative group, all irreducible
representation will be one-dimensional.
- such an irreducible representation will be given by a map
m:U(1) = GL(1,C)
But an invertible 1 byl matrix is jugt an invertible complex
number, and will denote of these as € -
Theorem(1-1):-
All irreducible representations of the group U(1)are unitary ,
and given by
z,:0eU(l)>r,(0) =" eU1)cGL(],C)= C for ke Z.
Proof:-
The given m,, satisfy the homomorphism property

(6, + 0;) = m; (61)m, (67)

And periodicity property m,(2k) = m,(0) = 1.

We just need to show that any f:U(1) — € satisfying the
homomorphism and periodicity properties is of this form.
Computing the derivative f'(0) = % we find

f'(0)= éilémofww‘f;_ﬂe) (Using the homomorphism

property)

~ _F((88)-1)
= n
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=f(6)f(0)
Denoting the constant f'(0) by €, the only solution to this
co

differential equation satisfying f(0) = 1 are f (9) =e
Requiring periodicity we find f(2m) = e“?™ = £(0) = 1.

Which implies ¢ =ik for k€ Z, and f=m, for some
integral k.

The representation we have found are all unitary, with
taking values not just in €, but in U(1) < (.
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1-1 The Charge Operator:-
The general principle that since the state space H is a unitary
representation of Lie group, we get an associated self- adjoint
operator on H.
For the case of G = U(1), this operator is just the operator
that acts by multiplication by the integer q on the
representation space C of the irreducible representation
(7, ,G) Since the irreducible representation of G = U(1) are
all one- dimensional , this means that as a U(1)
representation, we have

H=H, +H; +-+H,

For some set of integers qi, Qa,...,qn ( 7 1s dim of H, the g;
may not be distinct ). We will call this operator the charge
operator.
Definition(1-1):-
The charge operator @ is the self adjoint linear operator on
H that acts by multiplication by g; on the irreducible
representation H, .It acts on H as the matrix

¢ 0 .. 0
0 g, .. O
0 0 - dn

@ 1s the quantum mechanical observable , operator on H .
From the action of G on H, one can recover the
representation, i.e., the action of symmetry group U(1)on H,
by multiplying i and exponentiation to get
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7 I P {0
0 &, 0
HO) =€ =| cerireirinniirrinniininn e U(n) c GL(n,C)
R ef'qnf?
(2.4)

The standard physics terminology is that "Q generates the
U (1) symmetry transformation".

The general abstract high — powered mathematical point of
view is that the representation 7 is a map between manifolds
, from the Lie group U(1) to the Lie group GL(n,C), that
takes identity of U(1) to the identity space of GL(n,C). As
such it has differential, n’, which is a map from tangent space
at the identity of U(1)( which here is iR) to the tangent space
to identity of GL(n, C) which is the space M(n, C), the n by n
complex matrices. The tangent space at the identity of a Lie
group is called "Lie algebra". Here the relation between the
differential of m and the operator @ is

7':i0 iR — 7'(i0)=iQ0
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One can sketch the situation as follows: GL(n,
€)

u(l)

Fig(1): The representation 7 is a map between manifolds ,
from the Lie group U(1) to the Lie group GL(n,C).

1-2 Dual Spaces and Inner Products:- )

Given a vector space V over afield K, dual vector space V' is the
set ofall Linearmap V — K i.e.,:

V*={L:V - K such that L(av + fw) = aL(Vv) + pL(w)}
For a,f€ K,vyw € V. An e element of a vector space V is
written as "ket vector ".

|) where v is a label for a vector. An element of the dual vector

space V' is written as a" bra vector" (|
-Evaluating [ €V on vEV gives an element of K , written (I|v).
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I[fQ: V — V is linear map
([1Qv) = (1|Qv) = 1(Qv)
Definition(1-2):- ( Inner Product, Real case)
An inner product on real vector space Vismap (.,.): VxV — R.
That is linear in both variables and symmetric ((v,w) = (w, v7)).
Definition(1-3):- (Inner Product Complex case)
An Hermitic inner product on complex vector space V is map
(.,.):VxV — € That is linear in the second variables and ,anti
linear in the first variablesi.e, for @, f€ C and u, vw € V.
(eu+ Bv,w) = a{u,w) + Kv,w)
And conjugate symmetric ( v, w =(w, v ).
[2] Bases, Linear Operators and Matrix Elements:-
In particular an orthonormal basis {e; }, i = 1...n satisfy <e; ,
e;> =6;;. We will denote basis vectors in the bra-ket notation by
li)=¢; .
An arbitrary vector v € V can be expressed as
V=18 + V6 + 0+ Ve,
The linear function on V which takes value the coefficient v;of
the basis vector e; onavectorv € V,v; = (e;, )
In bra-ket notation we have v; = (e;|v) and |v) =¥, |i){i|v)
For corresponding elements of V*, one has (using anti-linearity)
(Wl = (vl = T, Tl = T (vli) (vl
The operation of taking a vector |v)to a dual vector (v|

corresponds to taking a column vector to the row vector that it is
conjugate- transpose. (v| = (vy,v,, ..., 1,) .Then one has

)
@)= Ty Fgsees Fd| § | = Tring, Polus s Prlidy
wn
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If Qis a linear operator 'V — V , with matrix elements
€< j|€ >. As matrices the action of 2 on |v)given by:

ri Q11 Qo Dy I’II
Un ﬂnl ﬂnz nnn Un
The decomposition of a vector v in terms of coefficients
lv) = X1 lD(iv).

2-1 Adjoint Operators :

The adjoint of a linear operator ©2: V — V is operator

—

satisfying < Qv ,w > = < v, 2w > orin bar-ket notation
<QU|lw>=<v|Pw> W, eV

Generalizing the fact
<av|=a@<v|fora€cC, < Qu| =< v | <Qu| is
conjugate transposed of [Q v ).

N, =1, , the linear transformation is self adjoint if 0'=Q,

skew — adjoint if o=_¢ .
2-2 Orthogonal and unitary transformations:-
A special class of linear transformations will be Invertible
transformations that preserve the inner product, i.e., satisfying

<X, > =< |o>=<vo>=<v|lo>
V v,w € V. Such transformations take orthonormal bases to
orthonormal bases
<2, Pw>=< U,_QT_Qw> =< v,w >
SoQ'Q =1 orequivalently Q'=Q" .
In matrix rotating, this first condition becomes:

Y QN Qe = X7 Qi Qe = 6

Which says that the column vectors of matrix for € are
orthonormal vectors.
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2-3 Orthonormal Groups
The orthonormal groups O (n) in n-dimensional is the group of

invertible transformations preserving inner product on a real
n-dimensional vector space V.
This is also the group of n by n real invertible matrices satisfying
Q)= 02
The sub group of O(n) of matrices with determinant 1
(equivalently , the sub group preserving orientation of
orthonormal bases) is called SO (n).
We have
O Q=1 =det (Q") det (Q) = det (QF) det (Q) = (detQ)* =1 .
So, det (Q)=+1.
0O(n) is continuous Lie group , with two components:
S50(n), the subgroup orientation preserving transformations all
elements of SO ( 2), are given by matrices of the form:
(6058 —sin@)
sin@ cos0
These matrices given counter -clock wise rotations in R* by
angle 0. The other component of 0(2) will be given by matrices

the form
(cosﬂ sinf )
sind —cos6

Note that the group SO ( 2) is isomorphic to group U(1) by

cosd —sinf i0
(sfné' cost ) — &

Definition(2-1):- (Unitary Groups)

The unitary groups U(n) in n-dimension 1is the group of
invertible transformations preserving a Hermitian product on a
complex n- dimensional vector space V. This is also the group of
n by n complex invertible matrices satisfying
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(Q_l}ijzﬁjl = Q)
The sub group of U(n) of matrices with determinant 1 is called
SU (n).
The Same calculation as in the real case here gives
det (Q71) det (Q) =det(QNdet(Q)= det(Q) det (Q)=
|det (2)]? = 1.
So det () is a complex number of length one. The map
QEU(n) —» det () eU(1)
Is a group homomorphism .
[3] Lie Algebras and Lie Algebras Representations :

For a group G we have defined unitary representations (m, V) for
finite dimensional vector space of complex dimension n as
homomorphism mn: G — U(n)

Definition(3-1):- (Lie Algebra)

For G Lie group of n by n invertible matrices, the Lie algebra of
G (written Lie(G) or G) is the space of n by n matrices X such
that e®* G fort eR.

Definition(3-2):- (Adjoin Representation )

The adjoin representation (Ad, G) is given by H the
homomorphism Ad: G eG— {x— GxG '} €GL(G) meaning
(Ad ()x=G X G~
To show that this is well defined, one needs to check that G x G~
'€ when x € , but this can be shown using the identity

etg:'{g—l = g ei‘.\'g'lj etgxg—l EG ‘f e!‘.‘(’ =
To check this, just expand the exponential and use
(GxG )" = (GxG )(GxG ™) .. (GxG ") = Gx*G ™

It is homomorphism, with
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Ad(G;) Ad(G>)= Ad(G,G>)
The adjoint representation (Ad, G) is in general not complex
representation , but a real with Ad(G) €GL(G) = GL(dim G, R).
Definition(3-3):- (Lie bracket)
The Lie bracket operation on G is the bilinear anti-symmetric
map given by the commutator of matrices
[.,.]:(X,Y)EGXxG—[X,Y]=XY —YXEG
Theorem(3-1):-
ifX,Y €G,[X,Y]=XY —YXEgG
Proof:
Since X € G , have e™* &G , y € G , we have e €G by the
adjoint representation
Ad(e™)y = et¥ye X g

As t varies this gives us parameterized curve in g. It is velocity

vector will also be in g, so. i(_e”"}’e_fx)eg

dt dt dt

= Xet)fye—tx _ eEXYXe—tX
Evaluating this at t= o gives
XY-YX
Which is thus shown to be in G .
To do calculations with a Lie algebra choose basis
Xy, X5, ..., X, for vector space g , the Lie bracket can be written in
terms of this basis as [Xj, Xk =201 Cia X,
3-1 Lie Algebra of the Orthogonal and Unitary Groups:-
The groups we are most interested in, are the groups of linear

i(er){ye—rx’) — i(etX}r))e—tX 3 etX}; (i (e—rX))
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Transformations preserving an inner product the orthogonal and
unitary groups. Subgroups of GL(n, R) or GL (n, C) of elements
Q satisfying the conditions Q7 =1.

In order to see what this condition Becomes on the Lie algebra,
write Q = e for some parameter t,X matrix in the Lie
algebra matrices is since transpose of a product matrices is
product of transpose matrices .

ie., (XY) = ¥'x"

And the complex conjugate of product of the matrices is the

product complex conjugates of matrices, one has:
(E‘ t.’s") T o e txt

The condition Q7' =1

Thus becomes e (et = g = 1
Since X andXT commute, this becomes e!®**") =1 or x +x7
=0

So the matrices we want to exponent are skew- adjoint ,
satisfying XT = —X.
3-2 Lie Algebra representations:
A (Complex) Lie algebra representations (¢, V) of Lie algebra G
on an n — dimensional complex vector space V is given by
a linear map.

p:XeE G- d(X)egL(nC) =M(nC)
Satisfying ¢ ([X,Y] =[¢ (X), ¢ (Y) ] such a presentation is
called unitary if its image is in U (n), i.e., is satisfies

¢(X)T = —¢ (X)

Given a basis X; , X5, ..., X of Lie algebra of dimension d with
structure constant Cj, a representation given by choice of
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n by n complex matrices ¢(X;) satisfying the commutation

relations
[¢ (X;), ¢ (X =L Ciia ¢ (X))
The representation is unitary when the matrices are skew-
adjoint.

The notion of Lie algebra is motivated by the fact of
homomorphism property causes the map =« to be largely
determined by its behavior infinitesimally near the identity, and
thus by the derivative ',

To define the derivative of such a map is in terms of velocity
vectors of paths.To representation @ : G —» GL (n,C) a linear

map': G - M(n, C) Where 1’ (x) = %H(ﬁ'tx)h:o

Fig(2): Representation the derivative of such a map is in
terms of velocity vectors of paths.

In the case of U(1) we classified all irreducible representations
(homomorphism U(1) » GL (1,C) = C* ) by looking at the
derivative of the map at identity.
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Theorem(3-1) :-

If m:G — GL(n,C) is group homomorphism , then
n:XeG - n'(X)= %(‘J’I(rfe"'}“'))lr:0 € gL(n,C) = M(n,C)
Satisfies :-

(])H(Etx) _ etﬁ"(}f)
(2)ForG eG, ' (GXG 1)=n(@n'(X)(n(§)
(3)m'is a Lie algebra homomorphism
(X, ]) =[n'(X), (V)]
Proof:-
(1)we have :

2 B rpbl . B (ERENE
We have : dtn(e ) ds“(e )|s=0

= n(e™) - m(e™)], o
= m(e™)r'(X)
So f(t)=mn(e*®) satisfies the differential equation
2 f = fr'(X) with initial condition f(0)= 1. This has the
unique solution f(t) = ™%,
(2) We have et™ GXG™) = (ot9¥57")
= n(Ge™*G ™)
= m(G)e™ Pn(g) ™!

Differentiating with respect to t at t = o gives

n'G*) = m(Gn' (X) (m(G)) !
(3) Recall that

d
[X,Y] = T (etXye tX)

So n'[X,Y] = H’(d% (etXYetx)L_O)

t=0
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:ir tXyv,—tX
drn(e Ye )|r:0(by

linearity)
o B L —tX
= dtn(e m(Y)m(e )lr:[}

(by 2)
(e (¥) (e @)| _ by 1)

= ['(X), 7" (V)]
[4] The Rotation and Spin Groups in 3 and 4 Dimensions:-
The rotation group in two dimensions about the origin are given
by elements of SO(2), with counter- clockwise rotation by an
cost —sinﬂ)

sinf cost

This can be written as, R(6):e% = cosf + Lsinf for L =

0 -1
(1 o)
In three dimension the group SO(3) is 3- dimensional and non-
commutative . One now has three independent directions one can

rotate  about, which one <can take to be the
X ,Y and Z - axes with rotation about these axes given by:

_d
dt

angle Ogiven by the matrix R(6) = (

1 0 0
R,.(8) = (0 cosO sine)
0 sin® cosb
cosB 0 sino )

R,(0) = ( 0 1 0
—sinB 0 cosb
cos® —sin6 O
R,(0) = (sinB cosf 0)
0 0 1
The infinitesimal picture near the identity of the group, given by
the Lie algebra structure on SO(3)is much easier to understand.
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For orthogonal groups the Lie algebra can be identified with
space of anti- symmetric matrices so in this case has basis

0 0 O 0 0 O 0 —1 0
L={p 0 —aklo=(0 0 —1Lk=[1 @
01 0 01 0 0 0 0

Which satisfy the commutation relations
[Ly, L;]= L3, [Ly, L3)= Ly, [ L3, L1]= L, The Lie bracket operation
(X,Y)e R} XR? > [X,Y]eR®?

that makes R’ a lie algebra SO (3)= SU(2) is just cross- product
on vectors in R .
The commutation relations for L; determine the Lie algebra
representation (ad,SO(n)) by the definition of the adjoint
representation, (ad(X))y = [X,Y]. For infinitesimal rotations
about X — axis, one has the adjoint representation

(ad(Ly)(Ly) =0, (ad(Ly)(Ly) = Lz , (ad(Ly)(Ly) = —L,
(2.33)
On vectors, such infinitesimal rotations vector, the standard
basis e;, of R™ by matrix multiplication, giving
L,e; =0, Lie, = €3, Lie;3 = —e,

Lie algebra representation, with the isomorphism identifying
L; = e;. At level of the group, rotations about the x- axis by an
angle 0 correspond to matrices

1 0 0
el =0 cos® —sind

0 sinf cos@
Our two isomorphism are on column vectors ( " vector"

representation onR”)and on anti- symmetry real matrices ( "
adjoint" representation on SO(3) ) with the isomorphism given by
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23] 0 —V3 Uy 0 —V; V5
Vy | | vy 0 —v).letA=1| v3 0 —y
V3 —Vy 7 0 —Vy 0

On the anti symmetric matrices the Lie group representation is
given by Ad (g) (A) = gA g— 1 when gis 3 by 3 orthogonal
matrix .
On the anti symmetric matrices the Lie algebra representation
given by ad(X)(A) = [X,A,where X is 3 by 3 anti symmetric
matrix.

4-1 Spin Group in Three and Four Dimensions:

The orthogonal groups SO (n) in that they come with associated
group, called spin(n). with every element of SO(n)
corresponding to two distinct elements of spin(n) .

Spin (n) is topologically the simply- connected double-cover of
SO0(n) , and one <can choose the covering map
d: Spin (n) — SO(n) to be group homomorphism.

Spin(n) is a Lie group of the same dimension , with an
isomorphic tangent space at the identity , so Lie algebras of the
two groups are isomorphic SO(n) =spin (n).

We will construct spin (n) and covering map ¢ only for the cases
n =3 and n =4, with higher dimensional . For n = 3 it turn
out that
spin(n) = SU(2),and for n = 4,spin(4) = SU(2) XSU(2) .
To see how this works it is best to not use just real and complex
numbers, but also bring in third number system, quaternions.

4-2 Rotation and Spin Group in Four Dimensions:-

Pairs (u,v) are units quaternions give the product group

sp(1) X sp(1). An element of this group onH = R* by
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q — uqv and this preserves length of vector and is linear in g, so
it must correspond to element of group S0 (4).

The Pairs (u,v) and (—u, —v) give the same orthogonal

transformation of R*, so the same element of SO(4). One can
show that SO (4) is group sp(1) x sp(1), with elements (u, )
and (—u, —v) identified. The name spin(4) is given to the Lie
group that "double covers" SO (4)

So here spin(4) = sp(1) X sp(1)

4-3 Rotations and Spin Groups in Three Dimensions:

The subgroup spin (3) that only acts on 3 of dimensions and
double —covers SO (3).To find this, consider the subgroup
spin(4) consisting of pair (u,v) of the form(w, u ") (subgroup
isomorphic to sp(1), since elements correspond to a single unit
length quaternion u).The subgroup acts on quaternions by

conjugation

q - uqu !

So gq=v=vi+v]+ 1k
An element u € Sp(1)actson v € R® © H as

V- uvu !

This is a linear action, preserving the length [7], so corresponds
to an element of SO(3).

We thus have a map
¢ :u€sp(l) = {¥ - uvu} € SO(3)
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Sp(1
i Spin(3

~ 1

Lo

SOV

Fig(3):Mapping between the spin (3) and double -
covers SO (3).
Both u and -u act in same way on v
The relationship between rotations of R*and unit quaternions is
quite simple: for & = w,i + w,j + w3k a unit vector in R*c H,
conjugation by the unit quaternion u(6, @) = cosf + wsint
Gives a rotation about the @ axes by an angle 20 . The factor of

2 here reflects the fact that unit quaternions double —cover the
rotation group SO (3). For example takes the rotation as Z — axis
by choosing W=K, A unit quaternions Ug = cos8 + ksinf has
inverse

1

Ug = cosl — ksind
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And actson v = vyi + ) + v3k
7 - ugtug ' = (cosd + ksind)(vyi + v,j + v3k)(cosd — ksinf)

= (v,(cos?8 — sin®6) — v,(2sinbcosh))i

+ (2v;sinfcosf + v,(cos’8 — sin’))j + vk

= (2v,c0520 — v,5in20)i + (v,c0s26 — v,5in20)j + vk
For rotations about the Z arises the double — covering map
®:ug = (cosf + ksind) € sp(1) = spin(3) —
(60328 —sin260 0

sin28  cos26 U)ESO(S)
0 0 1

As 0O goes from 0 to 27, ug traces a circle in sp(1).
In case of U(1), the unit vector in R*with basis i, for the case of
sp(1), can again take the identity to be in the real direction, and
the tangent space(the Lie algebra sp(1))is isomorphic to R*, with
basis i, j, k.
The Lie brackets just the commentator e.g. [i,j] = ij -ji = 2k.
Linear combination of these basis vectors one gets for paths
u(f,w) = cosf + wsinf
:—B u(6,w)|g_g = (cosf + wsinb)|g_g = W = w4l + Wyj + W3k
The derivative of the map ¢ will be linear map
¢ :sp(1) - SO(3) using the formula
cos20 —sin20 0
¢ (cosB + ksinf) = (sinZB cos26 0)

0 0 1
cos260 —sin20 0)

¢’ (k)=:—8 ®(cosO + ksinO)|g_o = (smEB cos268 0
0 0 1
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0 -2 0
=12 0 =2,
0 0 0

Repeating this on other basis vectors one find that
¢'(i) = 2Ly, ¢" () = 2Ly, , ¢" (k) =2L3 . Thus ¢'is an
isomorphism  of  sp(1) and SO (3) identity  the  basis

g andLy, Ly, Ls

L
Z

B |

r ]

that satisfy simple commutation relations

A . VA3 D W I |
{2’2]_2{2’2} 2’[2’2] , (249

4-4 The Spin Group and SU(2) :

We discuss the isomorphism between quaternions H and space of
2 by 2 complex matrices, the Pauli matrices can be used to gives
such an isomorphism taking

L0y . 0 =i
I—1= = —ioy=|
01 -i 0
. . 0 -1 =i
j—o—io, = K —> |
1 0 0 i

The correspondence between H and 2 by 2 complex matrices is
then given by:
, : : Qo —iq3 —qz —iq;
=qo + q1i +qzj + qzk © ( . . )
- Qo — 143 —qz —1q1\ _ 2 2 2
Since det ( ; : ) =qg +q1 +q; +
qz —1q1  qo +1q3 AT a2 T s

We see that the length squared function on quatemions
corresponds to the determinant function on 2 by 2 complex
matrices.
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The complex matrices in SU (2) can be written in the form

a
(_ g g) with a, p € C arbitrary complex number satisfying

lal?> + |81 =1 with unit vectors in H is given by
a=qo—1q3,f = —q; — iq
We see that sp(1) , spin(3) and SU(2) are all names for the same
group, geometrically S* , the unit sphere in R* .
We have an identification of Lie algebra sp(1) = SU(2) between
pure imaginary quaternions skew .Hermition trance— zero 2 by
2complex matrices
—_ ; . —lwy —wy —lwy\
w—wli+w2}+w3k<—}(w2_iwl iy )—w.cr

ok
With basis %%5 gets identified with a basis for Lie algebra

SU(2) which written in terms of Pauli matrices is X; = —i%

satisfying the commutation relations
[X1, X5] = X3, [X5,X3] = Xy, [X3,X,] = X,
Which are precisely the same commutation relations as for
SO(3) [L1,L2] = L3, [La,L3] =Ly, [L3,L1] = Ly
We have no less than three isomorphic Lie algebras
sp(1) = SU(2) =S0(3) which we have  adjoint
representation.

w1_+&)2_+w3—‘—>—— 2 «—>
2 2 2 2\wqy + lwy w3
0 w3 Wy
W3 0 — N
—w, Wy 0

With this 1somorphism identifying basis vectors as
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At the level of Lie groups we have seen-that our identification of
H and 2 by 2 matrices identifies sp(1) with SU(2) taking
u(6,w) — cosbl — i(w.o)sing =
cosf — iw3zsing  (—iw; — w,)sing
((—iwl + w,)sin@  cosO + iw;sinb )

The relation to SO(3) relations is that this is an SU(2) element
such that if one identifies vectors (v, 75, v3) € R® with complex

1’3 1’1 - f]»’z)

matrices ( 1 .
U 1 + ”.72 ox 1]'3

Then:

(
cosf! — i(w.o)sind) (

V3 vy — 11y
g + 1y — V3

)(COSEH —i(w.0)sing) ™!

Is the same vector, rotated by an angle 20 about the axis given by
w.
We will define

R(8, w) = %@ X1+azXy+ayX;) e_’:g“’"’z
COS(?)I - E(w.a)sin(g) (2.51)
And then it is conjugation by R(8, w) that rotates vectors by an

angle 0 about w.
In particular, rotation about the Z-axis by an angle 6 is given by

0 _;®
conjugation R(8, (0))(8 2 09)
1 0 e
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In term of the group SU(2) , the double covering map @ thus acts
on diagonalized matrices as
—i0 cos260 —sin26 0
®: (e ?e) € SU(2) » (51'1128 cos26 {J) € S0(3)
0 e 0 0 1
4-5 Spin Group in Higher Dimension:-
For each n>2, the orthogonal group SO(n) is double-covered by
group spin(n) with an isomorphic Lie algebra. Special
phenomena relating these spin groups occur for n<7 (it turns out
that spin(5)=sp(2), the 2 by 2 norm-preserving quaternionic
matrices), and spin(6)=SU(4), but in higher dimensions these
groups have no relation to quaternions or unitary groups. The
construction of the double-covering map  spin(n) — SO(n).

4-6 The spinor representation:-
The irreducible representation is known as spinor or spin
representation of spin(3) the homomorphism 7, defining the
representation is just the identity map from SU(2) to itself.
The spin representation of spin(3) is not representation of SO (3).
The double cover map ¢ : spin(3) — SO(3) is homomorphism,
so given a representation (7, V) of so(3) one gets representation
(red,V) of spin(3) by composition. But there no
homomorphism S0(3) — SU(2) that would allow us to make
the standard representation of SU(2) on C? into an S0(3)
representation. We could try and define a representation of
S0(3) by
m. g € 50(3) i H(.g) - Hspinm'(.‘j) S SU(Z)
Where g € SU(2) satisfying $(g) = g
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[S] Conclusions:

The representation theory play an especially important part to
explain how rotations in R™ are induced by the action of a certain
group, spin(n) on R".

For a representation m and group elements g that are close to the
identity, one can use exponentiation to write m(g) € GL(n, C).
spin representation of spin(3) the homomorphism 7 ;...

defining the representation is just the identity map from SU(2)
to itself.
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