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- Mixed spinor-tensor of rank 2, 𝑍 = 𝑍𝐴�̇�𝑂𝐴⨂𝑂��̇�. 

Spinor –tensors associated to Hermitian matrices are called Hermitian 

also . They span the real Minkowski  vector space 𝑀. This is vector, or 

(½, ½) representation. for decomposable spinor tensors , the scalar 

product is defined through symplectic form, as 

𝜂�𝜉⨂𝜉,�  𝜉′⨂𝜉′�� =∈ (𝜉, 𝜉′) ∈ (𝜉, 𝜉′)                    (6.2) 

decomposable spinor-tensors 𝑍𝐴�̇� = 𝜉𝐴𝜉̅�̇� corresponds to a null vector  

( of zero norm) in 𝑀𝐶. To any Weyl spinor 𝜉 is associated the null vector 

𝜉⨂𝜉 �  in real Minkowski space-time called its flagpole.  
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The symplectic structure  being preserved by the anti- isomorphism, 

also allow to raise or lower the dotted indices: 

𝜖:  𝑂�̇�  →   𝑂�̇� 

                                                              𝜁 →  𝜖(𝜁, . )  

                                                                𝜁�̇�  →  𝜁�̇� = 𝜁�̇�𝜖𝐵�̇̇�  

The simplistic form is also preserved: Λ−1 ∈ Λ =∈�= Λ�−1 ∈ Λ� 

(6)Spinor –Tensor and Minkowski  Space; 

The general element Z of  tensor ,product 𝑂𝐴�̇� ≡ 𝑂𝐴⨂𝑂�̇� is called  a 

mixed spinor –tensor of rank 2 . In a simplistic basis, it expands as 

𝑍 = 𝑍𝐴�̇�𝑂𝐴⨂𝑂�̇� and so is represented  by the complex 2 × 2 matrix     

Z Mat2(𝐶) with components 𝑍𝐴�̇� using the Pauli matrices  as(complex) 

basis of Mat2(𝐶) it expands in turn  as 𝑍 = 𝑍𝜇𝜎𝜇 ,𝑍𝜇 ∈ 𝐶, identifies 

withthe (complex) vector 𝑍 ∈ 𝑀ℂ  with components with  

   𝑍 = 𝑍𝜇𝜎𝜇=𝑍𝐴�̇�(𝜎𝜇)𝐴�̇�                         (6.1) 

The element of the form 𝑍 = 𝜉⨂𝜉 = 𝜉𝐴𝜉�̇�𝑂𝐴⨂𝑂�̇� are called 

decomposable[4, Blaine]. In matrix rotations. 

𝑍 = 𝜉𝜉𝑇:𝑍𝐴�̇� = 𝜉𝐴𝜉�̇�              ( T matrix (or vector) transportations). 

This established a one-to-one correspondence between 

- Vectors Z in complex Minkowski  vector space 𝑀𝐶, 𝑍 =

𝑍𝜇𝜎𝜇=𝑍𝐴�̇�(𝜎𝜇)𝐴�̇� 

- Complex 2X2 matrix ZMat2(𝐶) with components 𝑍𝐴�̇� . 
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To the frame AO   is associated the co-frame 𝑂𝐴
. An element of 𝑂𝐴 

expands as  𝜂 = 𝜂𝐴𝑂𝐴, 

 For instance, we have 𝑢𝐴𝑣𝐴 = −𝑢𝐴𝜐𝐴 . 

The naturally induced (dual) action of element of the spin group, 

Λ: 𝜆 →  𝜆Λ−1;  𝜂𝐴→𝜂�(Λ−1)�𝛬 

 , defines the dual representation , that we note spin*.  

The complex conjugation isomorphism representation 𝑠𝑝𝚤𝑛������ of group 

spin on 𝐶2 is defined as  

Λ = 𝜆 →  �̅�𝜂,      𝜂 ∈ 𝐶2 

It preserves also the symplectic form 𝜖 on 𝐶2. We note 


 AA OO this 

representation vector space. An element  is written  with dotted indices 

as 


























2

1




 A  where the index 



A  takes the values 


2,1  [5, Georgi].  

We call spin the group acting in this representation , the  𝐷(12 ,0), or 

right representation. 

 The complex conjugation defines the isomorphism ( called anti- 

isomorphism)  
































AA

AA OO


 

We write   with dotted indices it belongs to 𝑂�̇� [11, Eckhard]. 

46محور العلوم

CLIFFORD ALGEBRAS ONTO MINKOWSKI SPACE 



ال�سنة الرابعة - العدد ال�سابع - ربيع الأول/ربيع الثاني 1440هـ - دي�سمبر 2018م 346

جامعة القراآن الكريم وتاأ�صيل العلوم • عمادة البحث العلمي •  

18 

∈:𝑂𝐴 × 𝑂𝐴 ⟶ ℂ 

),(,    

This gives to Weyl – spinor space 𝑂𝐴 asymplectic structure ( C2,) 

  Thus spin appears as symmetry group of the simplistic space 𝑂𝐴.                     

A frame of 𝑂𝐴 is simplistic iff the simplistic form is represented by matrix 

  










01
10

, AAB  

This justifies the rotation since, in symplectic basis, the component   

AB = identifies with familiar Levi- Civita symbol.  In vector rotation  

  1221,   BA
AB

T
            (5.5) 

The anti-symmetric form  defines an anti-symmetric spin–invariant 

scalar product, called the symplectic scalar product [1,Peter]. 

Anti symmetry ⟹symplectic norm, of any spinor is zero:     , 0. 

The matrix  is called Levi- Civita spinor, we will consider    as the 

expression of the Minkowski metric. 

The dual   A
A OO of  vector space

AO is the space of 1-forms on it. 

The symplectie form  on 
AO  provides a duality isomorphism between 

both the spaces  

 
 








,
,

)(:

A
A

A

A
A

A OOO
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correspondence as above leads to identify 𝕄ℂ with the set 𝑀𝑎𝑡2(𝐶) of 

complex matrices Z=[𝑍𝐴�̇�]  . 

𝐶�  ∋ 𝑍(𝑧𝜇) ↦ Z≡ �𝑧
11̇   𝑧12̇

𝑧21̇    𝑧22̇
� ≡ �𝑧

° + 𝑧1       𝑧2  + 𝑖𝑧2
𝑧2 − 𝑖𝑧3      𝑧° − 𝑧1 �        (5.4) 

A according to spinorial or twistorial formalism, even  more fundamental 

is its universal covering , the group    spin↑ (1, 3)≡ 𝑆𝐿(2,𝐶) = 𝑆𝑃(2,𝐶). 

 In its fundamental representation, SL(2, C) is the subgroup of GL(2,C) 

has complex determinant = 1.  Has complex dimension 3 GL(2. C) has 

complex dimension 4). Thus spin = SL(2, C) act naturally on the vectors 

of C2, which are called Weyl spinors or Chiral spinors.  This is the so 

called  𝐷(0,½), or left , or negative helicity representation[3, Peskin].   

As a vector of the vector space C2 , a Weyl  spinor expands as A
AO   

in basis    21 ,OOOA   . 

Thus it appears as two. Component column vector 











2

1




  and, by 

definition, an element of group spin acts a linearly on it, as 2X2 matrix ⋀: 

𝑆𝑝𝑖𝑛:𝐶2  ⟶ 𝐶2 

⋀:    

The set of Weyl spinors, with this group action, is written OA . A Weyl 

spinor is written
A . 

 Since 𝑠𝑝𝑖𝑛 ↑= 𝑆𝑝�2و, C�𝑖𝑡 𝑚𝑎𝑦 also be seen as the group of 

transformation of GL(2, C ) which preserve a symplectic form of C2: 
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𝑥. 𝑥 = 𝑑𝑒𝑡𝑋, 2𝑥0 = 𝑇𝑟𝑋.    

In the following , we will distinguish usual (𝑥𝜇) and spinoral (𝑋𝐴�̇�) 

coordinate only by the indices[13, Faria]. 

An element of Lorentz group acts on the Minkowski vector space 𝑀 as 

matrices 𝐿: 𝑥 𝐿𝑥. The same action is expressed in Herm(2) through a 

matrices ⋀ as 

       𝑋 ↦ ⋀𝑋⋀�,   ⋀ is matrices of the group spin the universal covering of 

the Lorentz group 𝑆𝑂. We have the group homomorphism  

: spin ↦ SO 

⋀    ↦  𝐿 

We may choose the matrices ⋀ such that ⋀𝜎𝑣⋀ϯ = 𝐿� 
𝜇 𝜎𝜇  

Which implies 𝐿𝑣𝜇 = 1
2 𝑇𝑟(⋀𝜎𝑣⋀ϯ𝜎𝜇).  

Note that ⋀ and -⋀ correspond to the same element of the Lorentz 

group. Which reflect the fact that spin is 1-2.  Universal covering of 𝑆𝑂 

[16, Ruhl]. 

At the infinitesimal level Λ ∼ 𝐼 ∼ 𝜆, 𝐿�𝜇~𝛿�𝜇 + 𝐿�𝜇   so that 

𝜆𝜎�+𝜎�𝜆ϯ~𝐿�𝜇𝜎𝜇   

which implies                       𝜆 = 𝐴𝐿�𝜇𝜎𝜇𝜎�                      

𝐴�2𝐿𝑖0𝜎𝑖 + 2𝐿𝑗0𝜎𝑗�
~𝐿0𝑖 𝜎𝑖 . 

The  complex MinKowski space time 𝕄ℂ is defined by the extending the 

coordinates to complex numbers, and extending the MinKowski metric 

to corresponding bilinear form 𝑔(𝑧, 𝑧′) ≡ 𝜂𝜇𝑣  𝑧𝜇𝑧𝑣. The same spinoral 
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𝜑 = (𝜑𝐴), �̇� = (�̇�𝐴) → 𝜑 �̇� = ((𝜑 �̇�)𝐴𝐴 = 𝜑𝐴�̇�𝐴)            (5.1) 

The last relation is a matrix product .It provided a complex matrix of 

order 2[6, Lawrence]. 

In the following section, we will study the space-time algebra which is 

the Clifford algebra of the Spinors in Minkowski space time 3,1RM  , 

from group theoretical considerations.  We call that the isotropy group 

of Minkowski space time is orthogonal group 𝑂(1,3), with connected 

components, the restriction to matrices with determinant 1 lead to the 

special orthogonal group SO(1,3) with 2 connected components. Finally , 

the components of SO(1,3), connected to the entity is proper Lorentz 

group  SO⬆(1,3). 

Their (1-2) universal covering are respectively the group pin(1,3), 

spin(1,3)and spin↑(1,3). The group O, so and SO↑ act on Minkowski space 

time through the fundamental representation.  

The construction of spinors is based on the group isomorphism  

spin(1,3) = SL(2, C) = SP(2, C)                               (5.2) 

Note also the group isomorphism SO(1,3)=SO(1,3). 

There is a one to one correspondence between the real Minkowski M 

and the set of 𝐻𝑒𝑟𝑚(2) ⊂  𝑀𝑎𝑡 2(𝐶) of Hermitian matrices: to any 

point 𝑥 = (𝑥𝜇)of 𝑀 is associated the Hermitian matrix 

𝑋 = 𝑥𝜇𝜎𝜇 = �𝑋
11̇ 𝑋12̇

𝑋21̇ 𝑋22̇� = � 𝑥
0 + 𝑥1 𝑥2 + 𝑖𝑥3

𝑥2 − 𝑖𝑥3 𝑥0 − 𝑥1 �         (5.3) 

Where the 𝜎𝜇  are Pauli matrices . The matrices coefficients 𝑋𝐴�̇� with 

𝐴 = 1, 2,𝐴 = 1̇, 2̇  ̇ are spinorial coordinates . We have 
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(5) Spinor in Minkowski Space-Time:- 

We will introduce the spinors of space-time, and later we will link them 

with the space-time algebra 𝐶𝐿(1,3). 

To show how spinors appear from purely algebraic point of view. We 

remark, in 𝐶𝐿(3), the two elements (among others) 𝑒± = ½(1 ± 𝑒3) are 

idempotent, i.e., 𝑒±  
2 = 𝑒±. 

 The set ∁𝐿(3)𝑒±  𝑎𝑛𝑑 𝑒±∁𝐿(3)are left and right ideals of 𝐶𝐿(3). They 

are vector spaces of (complex) dimension2, and the identification of 𝐼 to 

the complex imaginary 𝑖 makes each of them identical to ∁2. A spinor is 

precisely an element of two dimensional representation space for the 

group SL(2,C) which is 𝐶2[3, Peskin]. 

Let us first consider 𝐶𝐿(3)𝑒+. If we choose an arbitrary frame (for 

instance �1
0� = 𝑒+, �0

1� = 𝑒1𝑒+)  

∀𝜑 ∈ 𝐶𝐿(3)𝑒+ ,𝜑 = ( ) ∈𝜑2
𝜑1  C2. 

 We write 𝜑 = (𝜑𝐴)𝐴=1,2 𝑎𝑛𝑑 𝐶𝐿(3)𝑒+ = 𝑂𝐴. Such elements constitute  

a representation, called 
)0,

2
1(

D of the special linear group SL(2, C). It   
corresponds to the so called Weyl spinor . 

A similar procedure to 𝑒+𝐶𝑙(3). choosing a basis (e.g.(1,0)=𝑒+, (0,1) =
 𝑒+𝑒1), we write its vectors with covariant (rather than contravariant )  

𝑒+𝐶𝐿(3) ≡ 𝑂𝐴 =     21,  A  . We have the very important 

mapping  

)3(CLOO A
A   
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We have also an isomorphism   between 𝐶𝐿𝑒𝑣𝑒𝑛(3)𝑎𝑛𝑑 𝐶𝐿(0,2)[12, 

Atiyah]. 

 (4) Span Minkowski Space-Time 

The Para vectors are the Clifford numbers of the form 

𝑥 = 𝑥𝑜1 + 𝑥𝑖𝑒𝑖 = 𝑥𝜇𝑒𝜇(𝑖 = 1,2,3)𝑎𝑛𝑑 𝜇 = 0, 1,2,3)         (4.1) 

This allows us to see the Minkowski space-time as naturally embedded 

in Clifford algebra of R3 ,as the vector space of Para vectors 

𝐶𝐿0(3)⨁𝐶𝐿1(3) . 

𝑥 = (𝑥𝜇) = �𝑥0,𝑥𝑖� ⟼ �̅� = (�̅�𝑀) ≡ (𝑥0,−𝑥𝑖)           (4.2) 

Allows us to define a quadratic form for the Para vectors  

                       𝑄(𝑥,𝑦) ≡ ½(�̅�𝑦 + 𝑦�𝑥) = 𝜂𝜇�𝑥𝜇𝑦�             (4.3) 

Where  𝜂 𝑖𝑠  Minkowski norm. 

       𝐶𝐿0(3)⨁𝐶𝐿1(3)                         ≃ 𝑀                     ≃ 𝐻𝑒𝑟𝑚(2). 

         (para vectors)     ≃ (Minkowski space time )     ≃  Herm(2) 

∁= 𝑥𝑜 + 𝑥𝑖𝑒𝑖                       ≃(𝑥𝜇)�𝑥0,𝑥𝑖�                                      ≃  𝓂 = 𝑥𝜇𝜎𝜇  

𝑄(𝑐, 𝑐)                          = 𝜂(𝑥, 𝑥)                         = 𝑑𝑒𝑙 𝓂 

𝑥0                              = 𝑥0                             =   ½ 𝑇𝑟 𝑚. 

The isomorphism between Minkowski  Hermitian matrices the three  

grade 1  vectors , 𝑒𝑖 identify with the three ON basis vectors of 𝑅3 ⊂ 𝑀 

[1, Peter]. 

 

40محور العلوم

CLIFFORD ALGEBRAS ONTO MINKOWSKI SPACE 



ال�سنة الرابعة - العدد ال�سابع - ربيع الأول/ربيع الثاني 1440هـ - دي�سمبر 2018م 352

جامعة القراآن الكريم وتاأ�صيل العلوم • عمادة البحث العلمي •  

12 

- an "imaginary" part 𝐶𝐿2(3)⨁𝐶𝐿3(3)≡ 𝑠𝑝𝑎𝑛 (𝐼𝑒𝑖 , 𝐼)  

thus, any pauli number may be seen as complex para vector[7, 

Varlamov] . 

With  the identification above (of 𝐼 by 𝑖), the restriction of the 

multiplication table (5) to the four para-vectors(1, 𝑒𝑖) identifies with that 

of four Pauli-matrices (1, 𝜎𝑖)𝑖=1,2,3 ≡ (𝜎𝜇)𝜇=0,1,2,3. Thus , the real part 

𝐶𝐿𝑒𝑣𝑒𝑛(3) is isomorphic (as vector space) to Herm(2). The set of 

Hermitian complex matrices of order 2.  

This isomorphism  extends to an algebra isomorphism  between the 

complete algebra 𝐶𝐿(3) and  algebra of complex matrices of order 2. 

𝑀2(𝐶) , explicited  as  : 

1, 𝑒𝑖 , 𝐼𝑒𝑖 , 𝐼 

1,  𝜎𝑖  ,𝑖𝜎𝑖 ,   𝑖 

The three grade 1 vectors  𝑒𝑖 identify with the three  traceless Hermitian 

matrices 𝜎𝑖  . 

The algebra isomorphism  𝐶𝐿𝑒𝑣𝑒𝑛 ≡ 𝐻 the algebra of quaternions . 

Here 𝐶𝐿𝑒𝑣𝑒𝑛(3) is algebra of even elements, scalars and bi-vectors. 

The isomorphism   is realized through 1 ↝ 𝑗𝑜,𝐼𝑒𝑖 ≡ 𝑒2𝑒3 ↝ 𝑗1,−Ie2 =
−e3e1 ↝ j2, Ie3 = e1e2 ↝∗ j3 .  

We may extend the isomorphism with 𝐼 ↝ 𝑖 . With the prescription that 

𝑖 commutes with the four 𝑗𝜇  . This allows us to the CL(3) as the set of 

complex quaternions , 𝐻 × 𝐶. 
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21

1
21

12

)2(

),(
)2(

yexeiyx
CLC

yexeyx
CLR







 

The right multiplication of such a 1-vector by 𝐼  gives another 1-vector: 

1221 )( yexeIyexe  . We recognize a rotation by 𝜋 2 �  𝑖𝑛 𝑅2 . 

𝑉 = 𝑅3, with an on basis   3,2,1iie construct 𝐶𝐿(𝑅3) ≡ 𝐶𝐿(3), the puali- 

algebra of space. Its elements are sometimes called the Pauli numbers.  

The orientation operator:- 

 The anti symmetrical products of two vectors gives three bivectors 

 (see the table4). The tri-vector 

𝑒1𝑒2𝑒3 ≡ 𝐼 𝑤𝑖𝑡ℎ 𝐼2 = −1 . The center  of 𝐶𝐿(3), i.e the set of elements 

with commute with all elements, is : 

CL�(3)⨁CL3(3) = span (1, I)                   (3.12) 

The similar algebraic properties of 𝐼  and of the complex pure 

imaginary 𝑖. 

Span (1, 𝐼)⊂ 𝐶𝐿(3)𝑎𝑛𝑑 ∁≡ 𝑠𝑝𝑎𝑛 (1. 𝑖)we may write any bi vector 

𝑒𝜇𝑒𝑣 = 𝑒𝜇𝑒𝑣𝑒𝑝𝑒𝑝 = 𝐼𝑒𝑝  . 

Where the index p is defined the group ∈𝜇𝑣𝑝=1 . This allows us to rewrite 

the basis of 𝐶𝐿(3) under the from  𝐼, (𝑒𝑖)(𝐼𝑒𝑖), 𝐼.  

This divides 𝐶𝐿(3) into . 

- a  "real" part 𝐶𝐿𝑜(3)⨁𝐶𝐿3(3)≡ {𝑝𝑎𝑟𝑎 𝑣𝑒𝑐𝑡𝑜𝑟𝑠} ≡ 𝑠𝑝𝑎𝑛 (1, e�). 
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[15, Berdt]. Periodicity theorem allow to explore Clifford algebra beyond 

dimension 8.They obey the following algebra isomorphisms  

𝐶𝐿(𝑝 + 1, 𝑞 + 1)   ≈  𝐶𝐿(1,1)  𝐶𝐿(𝑝 , 𝑞). 

𝐶𝐿(𝑝 + 2, 𝑞)   ≈  𝐶𝐿(2,0)  𝐶𝐿(𝑝 , 𝑞). 

𝐶𝐿(𝑝 , 𝑞 + 2)   ≈  𝐶𝐿(0,2)  𝐶𝐿(𝑝 , 𝑞). 

We will pay special attention to  

- The algebra of the plane 𝐶𝐿(𝑅2)  =  𝐶𝐿(2). 

- The space algebra, or Pauli algebra 𝐶𝐿(𝑅3)  =  𝐶𝐿(3).  

- The space-time algebra 𝐶𝐿(𝑅1,3)  =  𝐶𝐿(1 , 3) ,the algebra of 

(Minkowski)   space-time. 

The Clifford algebra of the plane, 𝐶𝐿(𝑅2)  𝐶𝐿(2) extends the                

2-dimensional plane 𝐶𝐿(𝑅2,𝑔) , with Euclidean scalar product 

        𝑔(𝑢, 𝑣)  =   𝑢.𝑣. 𝐿𝑒𝑡 𝑢𝑠 𝑎𝑛 𝑂𝑁 𝑏𝑎𝑠𝑖𝑠 (𝑒𝑖 . 𝑒𝑗  = 𝑖𝑗) 𝑓𝑜𝑟 𝑅2. 

Anti-symmetry ⇒ the only bi-vector (up to scalar) is 

𝑒1𝑒2  =  𝑒1⋀𝑒2  =  −𝑒2 𝑒1𝐼𝐶𝐿(2) =  𝐼             (3.11) 

The rule above imply 𝐼2 = -1 we may check that 𝐶𝐿(2) is closed for 

multiplication, and admits the basis  (1,e1,e2 ,𝐼) . The general poly vector 

expands as   A = A01+A1e1+A2e2+A3𝐼  

 The Euclidean plane 𝑅2 is naturally embedded (as vector space) in 

𝐶𝐿(2) as 𝐶𝐿1(2) , the set of 1-vector.  

We have embedding isomorphism    
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Given a real vector space 𝑉, we note 𝐶𝐿(𝑉) the complexified Clifford 

algebra 𝐶 𝐶𝑙(𝑉) [17,Jean Gallier].  

A case of interest for physics is when 𝑉 = 𝑅1,3 = 𝑀, Minkowski vector 

space, and we study below the space time-algebra 𝐶𝐿(𝑀). Its 

complexifiction  𝐶𝐿(𝑀)  =  𝐶𝐿(𝑅1,3) is called the Dirac algebra . 

More generally from complex algebra 𝐶𝐿(𝑛) it is possible to extract the 

real Clifford algebra 𝐶𝐿(𝑝, 𝑞) with 𝑝 +  𝑞 =  𝑛 . To do so, we extract 

𝑅𝑝,𝑞  𝑓𝑟𝑜𝑚  𝐶𝑛; as complex space, 𝐶 admits the basis e1,…, en.  

We may see 𝐶 as a real vector space with the basis e1,…,ep, iep+1,…,iep+q . 

Choosing n vectors in this list, we construct the real sub vectors space 

𝑅𝑝,𝑞, any element 𝑎 𝐶𝐿(𝑛) may decomposed 𝑎𝑠  𝑎  =  𝑎𝑟 +  𝑖𝑎𝑐 ,
𝑎𝑟  ,𝑎𝑐 𝐶𝐿(𝑝, 𝑞). 

There are  natural representations of 𝐶𝐿(𝑑) on a (complex) vector space 

of dimension 2𝑘 , with 𝑘 = [𝑑2] . It is elements are called Dirac spinors. 

Element of 𝐶𝐿(𝑑) are represented by matrices of order 2𝑘 , i.e., 

elements of the algebra 𝑀𝑎𝑡2𝑘(𝐶) , acting as endomorphism[14, 

Warner].  

This representation is faithful when 𝑑 is even and non- faithful when 𝑑 is 

odd. 

The structure of a real Clifford algebra is determined by the dimension 

of the vector space and the signature of the metric, so that it is written 

𝐶𝐿𝑝,𝑞(𝑅). It is expressed by its multiplication table. A matrix 

representation of Clifford algebra is an isomorphic algebra of 

matrices,(such matrix  representation lead to the construction  of spinor) 
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For p-form, it coincides with the usual Hodge duality of forms defined 

from the metric. 

In 4-Dimensions, the Hodge duality transforms  bivector into a bivector. 

Any bivector can be decomposed in  a self-dual and an anti- dual part: 
  BBBBBB ,              (3.8) 

A frame   niie .....1  for 𝑉 defines a natural frame for ⋀⋁. To define it, we 

consider all the finite sets of the form  

𝐼{𝑖1, … , 𝑖𝑘}  {𝑖, … ,𝑛}with 𝑖1  <  𝑖2 < ⋯ < 𝑖𝑘 .  

We define the multi vectors  𝑒𝐼=𝑒𝑖1  ⋀𝑒𝑖2  ⋀…⋀𝑒𝑖𝑘 and  𝑒�=𝑒0=1. 

The multi vectors 𝑒𝐼  provide a basis for the vectors space ⋀⋁, and thus 

for 𝐶, with the orthographic "index 𝐼 going from 1 to 2𝑛". 

 A multi vectors is expanded in this basis as  

𝐴 = 𝐴𝐼𝑒𝐼 ≡ 𝐴0 + 𝐴𝑖𝑒𝑖 + 𝐴𝑖𝑗𝑒{𝑖𝑗} + ⋯+ 𝐴1,2,…,𝑛𝑒{1,2,…,𝑛}        (3.9) 

Its components 𝐴𝐼 may be seen as coordinates in 𝐶. Thus function on 𝐶 

may considered as function of the coordinates. 

When the basis (𝑒𝑖) is on (𝑒𝑖 . 𝑒𝑗 = 𝜂𝑖𝑗 = ±𝛿𝑖𝑗), it is so for the basis (𝑒𝐼) of 

𝐶𝐿 (𝑉) , the scalar  product of arbitrary multi vectors expands as 
nnijjiiiJI

IJ BABABABABABA ,.....,2,1,....2,1.....     (3.10) 

Summation is assumed over all orthographic indices, and the  signs 

depend on the signature . 

When the vector space is complex vector space, its Clifford algebra also 

complex . 
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Up to multiplicative scalar, there is a unique 𝑑 −  𝑚𝑢𝑙𝑡𝑖 𝑣𝑒𝑐𝑡𝑜𝑟.  To 

normalize, we choose an oriented on basis for 𝑉, and define 

 𝐼 =e1… ed =  e1⋀…⋀ed as the orientation operator .  

It verifies 
sdd

I




 2
)1(

2 )1(  depending on the dimension and on the 

signature of the vector space  (𝑉,𝑔). The multiples of 𝐼 are called the 

pseudo scalars center of 𝐶𝐿(𝑉)is 𝐶𝐿0(𝑉)for 𝑑 even , or 

𝐶𝐿0(𝑉)𝐶𝐿𝑑(𝑉)for 𝑑 is odd. 

The conjugation, anti automorphsim, is the composition of both: 

𝑅 � = (𝑅∗)𝑇. 

The scalar product of 𝑉 is extended to 𝐶𝐿(𝑉) as   

𝑔(𝐴,𝐵) = 𝐴 − 𝐵 = 〈𝐴𝑇𝐵〉0                 (3.6) 

 Where <  >0 denotes the scalar part . It is bilinear. It reduces to zero 

for homogeneous multi vectors of different grades. It reduces to the 

usual product for scalars (grade 0), to the matrix product for 1- vectors    

(grade 1).In general 

𝐴.𝐵 = < 𝐴 >0 . <  𝐵 >0 +< 𝐴 >1. 

                               < 𝐵 >1+ ⋯ . +<  𝐴 >𝑛 . <  𝐵 >𝑛                             (3.7) 

The Hodge duality is defined as the operator 

∗:⋀𝑝   →  ⋀𝑛−𝑝 

                                                        𝐴𝑝   →  ∗  𝐴𝑝 

𝑠. 𝑡  𝐵𝑝⋀(∗  𝐴𝑃) =  ( 𝐵𝑝.𝐴𝑝)𝐼 , ∀𝐴𝑃 ∈ ⋀𝑝 
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More formally, one may define 𝐶𝐿(𝑉)  as the quotient of the tensor 

algebra 𝑇(𝑉) over V by the ideal generated by the set {𝑥𝑉: 𝑥𝑥 −
𝑔(𝑥, 𝑥)1}. A poly vector of definite order is called homogeneous, in 

general, thus is not the case, and we define the projectors < . >𝑟 which 

project a poly vector onto its homogeneous part of grade r.  

We call 𝐶𝐿𝑘(𝑉) the vector space of poly vectors of grade k.  As a vector 

space we have: 

𝐶𝐿(𝑉) =
𝑑
⨂

𝑘 = 0
𝐶𝐿𝑘(𝑉)            (3.3) 

As vector space, we have 𝐶𝐿0(𝑉)  𝑅  which is thus seen as embedded in 

CL(𝑉), as the mult vectors of grade 0(0- vectors) [17,Jean Gallier] . 

The vector space 𝑉 itself may be seen as embedded  in CL(𝑉) , as 𝐶𝐿1(𝑉); 

its elements are the multi vectors of grade 1 or (1-vectors). 

The addition of a scalar plus a grade on vector is called a Para vector. It 

can be expanded as 𝐴 = 𝐴0 + 𝐴𝑖𝑒𝑖 where  

.0
0  AeAandAA i

i
 The vector space of Para vectors is 

thus              )()()( 10 VCLVCLVCLVR            (3.4) 

We define also the even and odd subspaces of Clifford algebra 𝐶 as the 

direct sum  




 CCandCC
odd

oddk

even

even �
              (3.5) 

 Both have dimension 2𝑑−1 and 𝐶𝑒𝑣𝑒𝑛 is a subalgebra of 𝐶 . 

33



359    مجلة جامعة القرآن الكريم وتأصيل العلوم

 

5 

The multi vectors belong to the vector space  ⋀𝑉 ≡
𝑑
⨂

𝑝 = 0
⋀𝑝𝑉  all multi 

vectors, of dimension 2𝑑 [8,Castro]. 

The wedge product is easily extended to all multivectors by linearity, 

associatively, distributivity and anti commutatively for the 1- vectors  

𝑣⋀𝑤⋀ (𝑣 + 𝑤 + 𝑥)  =  𝑣⋀ 𝑤 ⋀𝑤 +  𝑤⋀ 𝑤⋀ 𝑤 + 𝑣⋀ 𝑤 ⋀𝑥 

=  (𝑣⋀)⋀𝑤 +  𝑣(𝑤⋀ 𝑤)  + 𝑣⋀𝑤⋀𝑥 

=  𝑣⋀𝑤⋀𝑥 

Which is tri-vector if we assume 𝑣,𝑤, 𝑥 linearly independent. 

(3) The Clifford Algebra: 

We will assume an inner product in 𝑉:  

𝑔: 𝑢,𝑣 →  𝑔(𝑢, 𝑣) 𝑢 .𝑣 

one defines the Clifford( or geometrical) product of two vectors as 

    𝑢𝑣 𝑢.𝑣 +  𝑢⋀𝑣                                      (3.1) 

In general this appears as the sum of a scalar (Poly vector of grade zero) 

plus a bi-vector (Poly vector of grade 2). 

Scalar product                       𝑢⋀𝑣  = 𝑢𝑣−𝑣𝑢
2

                            (3.2) 

The Clifford algebra 𝐶𝐿(𝑉) is defined as ⋀𝑉 , with the Clifford product 

𝑣,𝑤 → 𝑣𝑤. As a vector space (but not as algebra) 𝐶𝐿(𝑉) is isomorphic 

to the exterioralgebra ⋀𝑉. Thus, its elements are the multi vectors 

defined over 𝑉 [17,Jean Gallier]. 
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p
⨂V = 𝑉⨂𝑉⨂  …⨂𝑉                           (2.1) 

Has also a vector space structure. It is elements, the tensors of (0, p), are 

sums of element of the form  𝑣1⨂𝑣2⨂… ⨂𝑣𝑝. 

  To such a tensor , we associate its completely anti symmetric part 

𝑣1⋀𝑣2⋀… ⋀𝑣𝑝 = 𝑠𝑘𝑒𝑤[𝑣1⨂𝑣2⨂… .⨂𝑣𝑝 ]=                

∑[𝑖1,𝑖2,…,𝑖𝑝]𝑣𝑖1⨂𝑣𝑖2⨂….⨂𝑣𝑖𝑝
𝑝!                                (2.2) 

Thus sum extends over all permutations (𝑝! = ∑(𝑖1, 𝑖2, … , 𝑖𝑝)). It called 

wedge (or external) product [10,Talpaert]. 

Such an external product is skew (0, p) tensor called a p-multi vector (or 

p-vector). The sum of two p-multi-vector. 

If 𝑉𝑝and 𝑉𝑞 are p-vector and q-vector, we have  

       𝑉𝑝⋀𝑉𝑞=(−1)𝑝𝑞𝑉𝑞⋀𝑉𝑝                    (2.3) 

(2-2)The Exterior Algebra of Multi Vectors:- 

The bi vectors from the vector space ⋀2(𝑀), of dimension 𝑑(𝑑−1)
2 .            

A simple bivector B=𝑎⋀𝑏 can be considered as the oriented triangle with 

vectors 𝑎 𝑎𝑛𝑑 𝑏 as sides. 

Then B B> is-the oriented area of the triangle . 

Now we extend the sum to multi vectors of different orders, up to d, like    

𝐴0 + 𝐴1 + ⋯+ 𝐴𝑑 

Where 𝐴𝑃 is P-vector ( the expansion stops at d). 
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products provide canonical basis 

           rBB
AAA eeeeee

s

 ...... 21

21
   for tensors. 

By the direct sum operation, one defines the vector space of all tensors .  

𝑇𝑉 =
∞
⨁

𝑠 = 0, 𝑟 = 0
𝑇(𝑠,𝑟)𝑉                   (1.2) 

The sets of all tensors of (s, 0) type, ∀𝑠 (called covariant) and all tensors 

of (0, r) type ∀𝑟 (called contravariant). An antisymmetric (contravariant) 

tensor of type (0; p) will be called a p-vector (multi-vector). An anti-

symmetric (covariant) tensor of type (p; 0) defines a p-form (multi form). 

A vector space V, the anti symmetric part of tensor product of two 

vectors is defined as 

𝑣⋀𝑤 = ½(𝑣⨂𝑤 −𝑤⨂𝑣)               (1.3) 

This is anti symmetric tensor of rank (0, 2), also called a bivector[17,Jean 

Gallier]. The wedge product of two vectors defines bivectors, it 

generalization will lead to consider new objects called multivectors(= 

skew contravariant tensors). The wedge product is also defined for the 

dual 𝑉∗. The vectors of 𝑉∗ are called the 1-form of V, the multivectors of 

𝑉∗are called the multi-forms (=skew covariant tensors) of V. With the 

wedge product, multivectors from an algebra, the exterior (of multi-

vectors) ⋀𝑉 of V. Multi-forms form the exterior algebra of multi-forms 

⋀𝑉∗on V. 

(2) The wedge product:-  

If V is a vector space of dimension d, the tensor product 
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Clifford Algebras onto MinKowski Space  

هدفت هذه الورقة للبحث في جبر كلفرد لايجاد اطار مفهوم لزمرة اللف المغزلي  المستخلص:

ة في نزمرة فرعية معياللف المغزلي في  المينكوسكي (الزمكان). عرفنا زمرة في الفضاء

زمرة اللفل فان ن  ≤ ٣ كانتارتبط بالفضاء النوني. وأيضا اذا  و بركلفرد الج وحدات الجبر ،    

.وأسهل تربطاً   SO(n)     زمرة  من المغزلي النونية تبولوجيا أسهل 

Abstract: This paper aims to investigate Clifford algebras to get a 

understanding frame of spinor groups into MinKowski Space Time . The 

group spin(n) is called spinor group, is defined as a certain subgroup of 

units of an algebra, 𝐶𝐿𝑛 the Clifford algebra and associated with 𝑅𝑛. 

Furthermore, for 𝑛 ≥ 3 the group spin(n) is topologically simpler than 

the group SO(n). Indeed, for 𝑛 ≥ 3, the group spin(n)  is simply 

connected whereas SO(n) is not simply connected. 

Keywords: Tensor Algebra, Clifford Algebra, Minkowssski Space, 

Hermitian Matrix, Weyl Spinor. 

 (1) Introduction:-  

Multi vectors from the exterior algebra of V. Multiform from the exterior 

algebra of the dual vector space V*.The definition of the vector space of 

tensors of type(s, r)  

VV
rs

rs  ),(                                                  (1.1) 

Vectors are (0, 1) tensors; 1-forms are (1,0) tensors. An (s, r) tensors is 

linear operator or rs )(   [4,Bline]. A basis frame(eA) for V induces 

canonically a reciprocal basis(co frame) (eA ) for v* . Their tensor 

29





CLIFFORD ALGEBRAS ONTO MINKOWSKI SPACE 

 
Dr. A-Tayeb Abdel-Gadir Abdel-Majid*

*  Assistant Proffesor, Mathematics Section, Faculty of Education - University of Quran and Taseel of Sciences .


