
[9] De Faria, E. and De Melo, w., Mathematical Aspects of Quantum Field Theory, Cambridge University Press, 2010.
[10] Talpaert, Yves.2001.Differential Geometry with Applications to Mechanics and Physics, Marcel Dekker,Inc,New York.
[11] Eckhard Meinrenk, Lie groups and Lie algebras, Lecture Notes, University of Toronto, Fall (2010)
[12] Atiyah, M. F., R., and Hirzebruch, F. Riemann-Roch theorems for differentiable manifolds, Bull. A. M. S. (1959)
[13] De Faria, E. and De Melo, W., Mathematical Aspects of Quantum Field Theory, Cambridge University press,2010.
[14] Warner, F., Foundations of Differentiable Manifolds and Lie Groups Springer-Verlag 1983.
[15] Berndt, R., Representations of Linear Groups, Vieweg, 2007.
[16] W. Ruhl, The Lorentz group and harmonic analysis, W. A. Benjamin. Inc., New York 1970.
[17] Jean Gallier. Clifford Algebras, Clifford Groups, and a Generalization of Quaternions: The Pin and Spin Group, University of Pesnnsylvania, USA, 2012.

- Mixed spinor-tensor of rank 2, $Z=Z^{A \dot{A}} O_{A} \otimes \bar{O}_{\dot{A}}$.

Spinor -tensors associated to Hermitian matrices are called Hermitian also. They span the real Minkowski vector space M. This is vector, or ($1 / 2,1 / 2$) representation. for decomposable spinor tensors , the scalar product is defined through symplectic form, as

$$
\begin{equation*}
\eta\left(\xi \otimes \bar{\xi}, \xi^{\prime} \otimes \overline{\xi^{\prime}}\right)=\in\left(\xi, \xi^{\prime}\right) \in\left(\xi, \xi^{\prime}\right) \tag{6.2}
\end{equation*}
$$

decomposable spinor-tensors $Z^{A \dot{A}}=\xi^{A} \bar{\xi}^{\dot{A}}$ corresponds to a null vector (of zero norm) in M_{C}. To any Weyl spinor ξ is associated the null vector $\xi \otimes \bar{\xi}$ in real Minkowski space-time called its flagpole.

References:-

[1] Peter, Woit, Quantum Mechanics for Mathematicians, Department of Mathematics, Columbia University, 2013.
[2] S. Lang, Linear Algebra (Undergraduate Texts in Mathematics) third edition, Springer, 1987.
[3] Peskin, M, and Schroeder, D, An Introduction to Quantum Field Theory, West view press, 1995.
[4] H. Blaine Lawson, JT\& Marie-Louise Michelsohn, SpinGeometry, U of Princeton New Jersey, 1989.
[5] H. Georgi, "Lie Algebras in Particle Physics:from Isospin to Unified Theories," Westview Press, 1999.
[6] Lawrence Conlon, Differential manifold, second edditon Birkhauser Boston 2001.
[7] V. V. Varlamov, Universal covering of the orthogonal groups, Advanced in Applied Clifford Algebras, 2004.
[8] C. Castro and M. Pavsic, Clifford Alebra of Spacetime and Conformal Group, 2003.

The symplectic structure \in being preserved by the anti- isomorphism, also allow to raise or lower the dotted indices:

$$
\begin{aligned}
\epsilon: O^{\dot{A}} & \rightarrow O_{\dot{A}} \\
\zeta & \rightarrow \epsilon(\zeta, .) \\
\zeta^{\dot{A}} & \rightarrow \zeta_{\dot{A}}=\zeta^{\dot{B}} \epsilon_{\dot{B} \dot{A}}
\end{aligned}
$$

The simplistic form is also preserved: $\Lambda^{-1} \in \Lambda=\bar{\epsilon}=\bar{\Lambda}^{-1} \in \bar{\Lambda}$

(6)Spinor -Tensor and Minkowski Space;

The general element Z of tensor, product $O^{A \dot{A}} \equiv O^{A} \otimes O^{\dot{A}}$ is called a mixed spinor -tensor of rank 2 . In a simplistic basis, it expands as $Z=Z^{A \dot{A}} O_{A} \otimes O_{\dot{A}}$ and so is represented by the complex 2×2 matrix $\mathrm{Z} \in \operatorname{Mat}_{2}(C)$ with components $Z^{A \dot{A}}$ using the Pauli matrices as(complex) basis of $\operatorname{Mat}_{2}(C)$ it expands in turn as $Z=Z^{\mu} \sigma_{\mu}, Z^{\mu} \in C$, identifies withthe (complex) vector $Z \in M_{\mathbb{C}}$ with components with

$$
\begin{equation*}
Z=Z^{\mu} \sigma_{\mu}=Z^{A \dot{A}}\left(\sigma^{\mu}\right)_{A \dot{A}} \tag{6.1}
\end{equation*}
$$

The element of the form $Z=\xi \otimes \bar{\xi}=\xi^{A} \bar{\xi}^{\dot{A}} O_{A} \otimes \bar{O}_{\dot{A}} \quad$ are called decomposable[4, Blaine]. In matrix rotations.
$Z=\xi \xi^{T}: Z^{A \dot{A}}=\xi^{A} \xi^{\dot{A}} \quad$ (T matrix (or vector) transportations).
This established a one-to-one correspondence between

- Vectors Z in complex Minkowski vector space $M_{C}, Z=$ $Z^{\mu} \sigma_{\mu}=Z^{A \dot{A}}\left(\sigma^{\mu}\right)_{A \dot{A}}$
- Complex 2×2 matrix $Z \in \operatorname{Mat}_{2}(C)$ with components $Z^{A \dot{A}}$.

To the frame O^{A} is associated the co-frame O_{A}. An element of O_{A} expands as $\eta=\eta_{A} O^{A}$,

For instance, we have $u^{A} v_{A}=-u_{A} v^{A}$.

The naturally induced (dual) action of element of the spin group, $\Lambda: \lambda \rightarrow \lambda \Lambda^{-1} ; \eta_{A \rightarrow} \eta_{\beta}\left(\Lambda^{-1}\right)^{\beta} \Lambda$
, defines the dual representation, that we note spin*.

The complex conjugation isomorphism representation $\overline{s p ı n}$ of group spin on C^{2} is defined as

$$
\Lambda=\lambda \rightarrow \bar{\lambda} \eta, \quad \eta \in C^{2}
$$

It preserves also the symplectic form ϵ on C^{2}. We note $\overline{O^{A}} \equiv O^{\dot{A}}$ this representation vector space. An element is written with dotted indices as $\eta=\left(\eta^{\dot{A}}\right)=\binom{\dot{1}}{\dot{2}}$ where the index \dot{A} takes the values $\dot{1}, \dot{2}$ [5, Georgi].

We call $\overline{s p i n}$ the group acting in this representation, the $D^{\left(\frac{1}{2}, 0\right)}$, or right representation.

The complex conjugation defines the isomorphism (called antiisomorphism)

$$
\begin{gathered}
O^{A} \rightarrow O^{\dot{A}} \\
\zeta=\zeta^{A}=\binom{\alpha}{\beta} \mapsto \bar{\zeta}=\bar{\zeta}^{\dot{A}}=\binom{\bar{\alpha}}{\bar{\beta}}
\end{gathered}
$$

We write $\bar{\zeta}$ with dotted indices it belongs to $O^{\dot{A}}$ [11, Eckhard].

$$
\begin{aligned}
& \in: O^{A} \times O^{A} \rightarrow \mathbb{C} \\
& \zeta, \zeta \rightarrow \in(\zeta, \zeta)
\end{aligned}
$$

This gives to Weyl - spinor space O^{A} asymplectic structure ($\left.C^{2}, \in\right)$
Thus spin appears as symmetry group of the simplistic space O^{A}. A frame of O^{A} is simplistic iff the simplistic form is represented by matrix

$$
\in_{A B}=\in\left(\mu_{A}, \mu_{\beta}\right)=\left(\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

This justifies the rotation since, in symplectic basis, the component $\epsilon_{A B}=$ identifies with familiar Levi- Civita symbol. In vector rotation

$$
\begin{equation*}
\in(\zeta, \zeta)=\zeta^{T} \in \zeta=\in_{A B} \zeta^{A} \zeta^{B}=\zeta^{1} \zeta^{2}-\zeta^{2} \zeta^{1} \tag{5.5}
\end{equation*}
$$

The anti-symmetric form \in defines an anti-symmetric spin-invariant scalar product, called the symplectic scalar product [1,Peter].

Anti symmetry \Longrightarrow symplectic norm, of any spinor is zero: $\in(\zeta, \zeta)=0$.
The matrix \in is called Levi- Civita spinor, we will consider \in as the expression of the Minkowski metric.

The dual $O_{A}=\left(O^{A}\right)^{*}$ of vector space O^{A} is the space of 1-forms on it. The symplectie form \in on O^{4} provides a duality isomorphism between both the spaces

$$
\begin{aligned}
& \in: O^{A} \mapsto O_{A} \equiv\left(O^{A}\right)^{*} \\
& \zeta \mapsto \zeta^{*}=\in(\zeta, \cdot) \\
& \mu_{A} \mapsto \mu^{A}=\in\left(\mu_{A}, \cdot\right)
\end{aligned}
$$

السنة الرابعة - العدد السابع - ربيع الأول/ربيع الثاني 1440هـ - ديسمبر 2018م
correspondence as above leads to identify $\mathbb{M}_{\mathbb{C}}$ with the set $M a t_{2}(C)$ of complex matrices $Z=\left[Z^{A \dot{A}}\right]$.

$$
C^{4} \ni Z\left(z^{\mu}\right) \mapsto Z \equiv\left(\begin{array}{cc}
z^{1 \dot{1}} & z^{1 \dot{2}} \tag{5.4}\\
z^{2 \dot{1}} & z^{2 \dot{2}}
\end{array}\right) \equiv\left(\begin{array}{cc}
z^{\circ}+z^{1} & z^{2}+i z^{2} \\
z^{2}-i z^{3} & z^{\circ}-z^{1}
\end{array}\right)
$$

A according to spinorial or twistorial formalism, even more fundamental is its universal covering, the group $\operatorname{spin}^{\uparrow}(1,3) \equiv S L(2, C)=S P(2, C)$.

In its fundamental representation, $\mathrm{SL}(2, \mathrm{C})$ is the subgroup of $\mathrm{GL}(2, \mathrm{C})$ has complex determinant $=1$. Has complex dimension $3 \mathrm{GL}(2 . \mathrm{C})$ has complex dimension 4). Thus $\operatorname{spin}^{\uparrow}=S L(2, C)$ act naturally on the vectors of C^{2}, which are called Weyl spinors or Chiral spinors. This is the so called $D^{(0,1 / 2)}$, or left, or negative helicity representation[3, Peskin].

As a vector of the vector space C^{2}, a Weyl spinor expands as $\zeta=\zeta^{A} O_{A}$ in basis $\left(O_{A}\right)=\left(O_{1}, O_{2}\right)$.

Thus it appears as two. Component column vector $\zeta=\binom{\zeta^{1}}{\zeta^{2}}$ and, by definition, an element of group spin acts a linearly on it, as 2×2 matrix \wedge :

$$
\begin{gathered}
\text { Spin }: C^{2} \rightarrow C^{2} \\
\wedge: \zeta \rightarrow \wedge \zeta
\end{gathered}
$$

The set of Weyl spinors, with this group action, is written O^{A}. A Weyl spinor is written ζ^{A}.

Since $\operatorname{spin} \uparrow=\operatorname{Sp}(2, \mathrm{C})$ it may also be seen as the group of transformation of $G L(2, C)$ which preserve a symplectic form $\in O C^{2}$:

- جاصaة القرآن الكريير وتأُميل الهلوم • عهامة البمث اللهلهيى
$x . x=\operatorname{det} X, 2 x^{0}=\operatorname{Tr} X$.
In the following, we will distinguish usual $\left(x^{\mu}\right)$ and spinoral ($X^{A \dot{A}}$) coordinate only by the indices[13, Faria].

An element of Lorentz group acts on the Minkowski vector space M as matrices $L: x \rightarrow L x$. The same action is expressed in Herm(2) through a matrices \wedge as
$X \mapsto \wedge X \wedge^{\dagger}, ~ \wedge$ is matrices of the group spin the universal covering of the Lorentz group $S O$. We have the group homomorphism

$$
\varphi: \text { spin } \mapsto \text { SO }
$$

$$
\wedge \mapsto L
$$

We may choose the matrices Λ such that $\wedge \sigma_{v} \wedge^{\dagger}=L_{v}^{\mu} \sigma_{\mu}$
Which implies $L_{v}^{\mu}=\frac{1}{2} \operatorname{Tr}\left(\Lambda \sigma_{v} \Lambda^{\dagger} \sigma_{\mu}\right)$.
Note that Λ and $-\wedge$ correspond to the same element of the Lorentz group. Which reflect the fact that spin is 1-2. Universal covering of $S O$ [16, Ruhl].

At the infinitesimal level $\Lambda \sim I \sim \lambda, L_{v}^{\mu} \sim \delta_{v}^{\mu}+L_{v}^{\mu} \quad$ so that $\lambda \sigma_{\nu+} \sigma_{\nu} \lambda^{\dagger} \sim L_{\nu}^{\mu} \sigma_{\mu}$
which implies

$$
\begin{gathered}
\lambda=A L_{v}^{\mu} \sigma_{\mu} \sigma_{v} \\
A\left(2 L_{i}^{0} \sigma_{i}+2 L_{j}^{0} \sigma_{j}\right) \sim L_{0}^{i} \sigma_{i}
\end{gathered}
$$

The complex MinKowski space time $\mathbb{M}_{\mathbb{C}}$ is defined by the extending the coordinates to complex numbers, and extending the MinKowski metric to corresponding bilinear form $g\left(z, z^{\prime}\right) \equiv \eta_{\mu v} z^{\mu} z^{v}$. The same spinoral السنة الرابعة - العدد السابع - ربيع الأول/ربيع الثاني 1440هـ - ديسمبر 2018م

$$
\begin{equation*}
\varphi=\left(\varphi^{A}\right), \dot{\xi}=\left(\dot{\xi}_{A}\right) \rightarrow \varphi \dot{\xi}=\left((\varphi \dot{\xi})_{A}^{A}=\varphi^{A} \dot{\xi}_{A}\right) \tag{5.1}
\end{equation*}
$$

The last relation is a matrix product .It provided a complex matrix of order $2[6$, Lawrence].

In the following section, we will study the space-time algebra which is the Clifford algebra of the Spinors in Minkowski space time $M=R^{1,3}$, from group theoretical considerations. We call that the isotropy group of Minkowski space time is orthogonal group $O^{(1,3)}$, with connected components, the restriction to matrices with determinant 1 lead to the special orthogonal group $\mathrm{SO}(1,3)$ with 2 connected components. Finally, the components of $\mathrm{SO}(1,3)$, connected to the entity is proper Lorentz group SOT(1,3).

Their (1-2) universal covering are respectively the group pin(1,3), $\operatorname{spin}(1,3)$ and $\operatorname{spin} \uparrow(1,3)$. The group O, so and SO \uparrow act on Minkowski space time through the fundamental representation.

The construction of spinors is based on the group isomorphism

$$
\begin{equation*}
\operatorname{spin} \uparrow(1,3)=\operatorname{SL}(2, C)=\operatorname{SP}(2, C) \tag{5.2}
\end{equation*}
$$

Note also the group isomorphism $\operatorname{SO} \uparrow(1,3)=\mathrm{SO}(1,3)$.
There is a one to one correspondence between the real Minkowski M and the set of $\operatorname{Herm}(2) \subset \operatorname{Mat}_{2}(C)$ of Hermitian matrices: to any point $x=\left(x^{\mu}\right)$ of M is associated the Hermitian matrix

$$
X=x^{\mu} \sigma_{\mu}=\left(\begin{array}{ll}
X^{1 \dot{1}} & X^{1 \dot{2}} \tag{5.3}\\
X^{2 \dot{1}} & X^{2 \dot{2}}
\end{array}\right)=\left(\begin{array}{cc}
x^{0}+x^{1} & x^{2}+i x^{3} \\
x^{2}-i x^{3} & x^{0}-x^{1}
\end{array}\right)
$$

Where the σ_{μ} are Pauli matrices. The matrices coefficients $X^{A \dot{A}}$ with

$$
A=1,2, A=\dot{1}, \dot{2} \text { are spinorial coordinates. We have }
$$

(5) Spinor in Minkowski Space-Time:-

We will introduce the spinors of space-time, and later we will link them with the space-time algebra $C L(1,3)$.

To show how spinors appear from purely algebraic point of view. We remark, in $C L(3)$, the two elements (among others) $e_{ \pm}=1 / 2\left(1 \pm e_{3}\right)$ are idempotent, i.e., $e_{ \pm}^{2}=e_{ \pm}$.

The set $C L(3) e_{ \pm}$and $e_{ \pm} C L(3)$ are left and right ideals of $C L(3)$. They are vector spaces of (complex) dimension2, and the identification of I to the complex imaginary i makes each of them identical to C^{2}. A spinor is precisely an element of two dimensional representation space for the group $\mathrm{SL}(2, \mathrm{C})$ which is $C^{2}[3$, Peskin].

Let us first consider $C L(3) e_{+}$. If we choose an arbitrary frame (for instance $\left.\binom{1}{0}=e_{+},\binom{0}{1}=e_{1} e_{+}\right)$
$\forall \varphi \in C L(3) e_{+}, \varphi=\binom{\varphi 1}{\varphi 2} \in \mathrm{C}^{2}$.
We write $\varphi=\left(\varphi^{A}\right)_{A=1,2}$ and $C L(3)_{e_{+}}=O^{A}$. Such elements constitute a representation, called $D^{\left(\frac{1}{2}, o\right)}$ of the special linear group $\operatorname{SL}(2, C)$. It corresponds to the so called Weyl spinor .

A similar procedure to $e_{+} C l(3)$. choosing a basis (e.g. $(1,0)=e_{+},(0,1)=$ $e_{+} e_{1}$), we write its vectors with covariant (rather than contravariant)
$e_{+} C L(3) \equiv O_{A}=\left\{\zeta \equiv\left(\zeta_{A}\right) \equiv\left(\zeta_{1}, \xi_{2}\right)\right\}$. We have the very important mapping

$$
O^{A} \times O_{A} \rightarrow C L(3)
$$

We have also an isomorphism between $C L^{\text {even }}(3)$ and $C L(0,2)[12$, Atiyah].

(4) Span Minkowski Space-Time

The Para vectors are the Clifford numbers of the form

$$
\begin{equation*}
\left.x=x^{o} 1+x^{i} e_{i}=x^{\mu} e_{\mu}(i=1,2,3) \text { and } \mu=0,1,2,3\right) \tag{4.1}
\end{equation*}
$$

This allows us to see the Minkowski space-time as naturally embedded in Clifford algebra of R^{3}, as the vector space of Para vectors $C L_{0}(3) \oplus C L_{1}(3)$.

$$
\begin{equation*}
x=\left(x^{\mu}\right)=\left(x^{0}, x^{i}\right) \longmapsto \bar{x}=(\bar{x} M) \equiv\left(x^{0},-x^{i}\right) \tag{4.2}
\end{equation*}
$$

Allows us to define a quadratic form for the Para vectors

$$
\begin{equation*}
Q(x, y) \equiv 1 / 2(\bar{x} y+\bar{y} x)=\eta_{\mu \nu} x^{\mu} y^{v} \tag{4.3}
\end{equation*}
$$

Where η is Minkowski norm.

$$
\begin{array}{ccc}
C L_{0}(3) \oplus C L_{1}(3) & \simeq M & \simeq \operatorname{Herm}(2) \\
\text { (para vectors) } & \simeq(\text { Minkowski space time }) & \simeq \operatorname{Herm}(2) \\
\mathrm{C}=x^{o}+x^{i} e_{i} & \simeq\left(x^{\mu}\right)\left(x^{0}, x^{i}\right) & \\
Q(c, c) & =\eta(x, x) & \\
x^{0} & =x^{0} & \\
& & =\operatorname{del} m \\
& & 1 / 2 \operatorname{Tr} m
\end{array}
$$

The isomorphism between Minkowski Hermitian matrices the three grade 1 vectors, e_{i} identify with the three $O N$ basis vectors of $R^{3} \subset M$ [1, Peter].

- an "imaginary" part $C L^{2}(3) \oplus C L^{3}(3) \equiv \operatorname{span}\left(I e_{i}, I\right)$
thus, any pauli number may be seen as complex para vector[7, Varlamov].

With the identification above (of I by i), the restriction of the multiplication table (5) to the four para-vectors $\left(1, e_{i}\right)$ identifies with that of four Pauli-matrices $\left(1, \sigma_{i}\right)_{i=1,2,3} \equiv\left(\sigma_{\mu}\right)_{\mu=0,1,2,3}$. Thus, the real part $C L^{\text {even }}(3)$ is isomorphic (as vector space) to Herm(2). The set of Hermitian complex matrices of order 2.

This isomorphism extends to an algebra isomorphism between the complete algebra $C L(3)$ and algebra of complex matrices of order 2. $M_{2}(C)$, explicited as :

$$
\begin{gathered}
1, e_{i}, I e_{i}, I \\
1, \sigma_{i}, i \sigma_{i}, i
\end{gathered}
$$

The three grade 1 vectors e_{i} identify with the three traceless Hermitian matrices σ_{i}.

The algebra isomorphism $C L^{\text {even }} \equiv H$ the algebra of quaternions.
Here $C L^{\text {even }}(3)$ is algebra of even elements, scalars and bi-vectors.

The isomorphism is realized through $1 \leadsto j_{o} I e_{i} \equiv e_{2} e_{3} \leadsto j_{1},-\mathrm{Ie}_{2}=$ $-\mathrm{e}_{3} \mathrm{e}_{1} \leadsto \mathrm{j}_{2}, \mathrm{Ie}_{3}=\mathrm{e}_{1} \mathrm{e}_{2} \sim \approx \mathrm{j}_{3}$.

We may extend the isomorphism with $I \sim i$. With the prescription that i commutes with the four j_{μ}. This allows us to the $\mathrm{CL}(3)$ as the set of complex quaternions,$H \times C$.

$$
\begin{aligned}
& R^{2} \rightarrow C L^{1}(2) \\
& (x, y) \rightarrow x e_{1}+y e_{2} \\
& C \rightarrow C L^{1}(2) \\
& x+i y \rightarrow x e_{1}+y e_{2}
\end{aligned}
$$

The right multiplication of such a 1-vector by I gives another 1-vector: $\left(x e_{1}+y e_{2}\right) I=x e_{2}-y e_{1}$. We recognize a rotation by $\pi / 2$ in R^{2}.
$V=R^{3}$, with an on basis $\left(e_{i}\right)_{i=1,2,3}$ construct $C L\left(R^{3}\right) \equiv C L(3)$, the pualialgebra of space. Its elements are sometimes called the Pauli numbers.

The orientation operator:-
The anti symmetrical products of two vectors gives three bivectors (see the table4). The tri-vector $e_{1} e_{2} e_{3} \equiv I$ with $I^{2}=-1$. The center of $C L(3)$, i.e the set of elements with commute with all elements, is:

$$
\begin{equation*}
\mathrm{CL}^{\mathrm{o}}(3) \oplus \mathrm{CL}^{3}(3)=\operatorname{span}(1, \mathrm{I}) \tag{3.12}
\end{equation*}
$$

The similar algebraic properties of I and of the complex pure imaginary i.

Span $(1, I) \subset C L(3)$ and $C \equiv \operatorname{span}(1 . i)$ we may write any bi vector $e_{\mu} e_{v}=e_{\mu} e_{v} e_{p} e_{p}=I e_{p}$.

Where the index p is defined the group $\epsilon_{\mu v p}=1$. This allows us to rewrite the basis of $C L(3)$ under the from $I,\left(e_{i}\right)\left(I e_{i}\right), I$.

This divides $C L(3)$ into .

- a "real" part $C L^{o}(3) \oplus C L^{3}(3) \equiv\{$ para vectors $\} \equiv \operatorname{span}\left(1, \mathrm{e}_{\mathrm{i}}\right)$.

-جاصهة القرآن الكريمر وتأميل اللولوم • عهمادة البمث العلهوي

[15, Berdt]. Periodicity theorem allow to explore Clifford algebra beyond dimension 8. They obey the following algebra isomorphisms

$$
\begin{aligned}
C L(p+1, q+1) & \approx C L(1,1) \otimes C L(p, q) \\
C L(p+2, q) & \approx C L(2,0) \otimes C L(p, q) \\
C L(p, q+2) & \approx C L(0,2) \otimes C L(p, q)
\end{aligned}
$$

We will pay special attention to

- The algebra of the plane $C L\left(R^{2}\right)=C L(2)$.
- The space algebra, or Pauli algebra $C L\left(R^{3}\right)=C L(3)$.
- The space-time algebra $C L\left(R^{1,3}\right)=C L(1,3)$, the algebra of (Minkowski) space-time.

The Clifford algebra of the plane, $C L\left(R^{2}\right) \equiv C L(2)$ extends the 2-dimensional plane $C L\left(R^{2}, g\right)$, with Euclidean scalar product

$$
g(u, v)=u . v . \text { Let us an ON basis }\left(e_{i} . e_{j}=\delta_{i j}\right) \text { for } R^{2}
$$

Anti-symmetry \Rightarrow the only bi-vector (up to scalar) is

$$
\begin{equation*}
e_{1} e_{2}=e_{1} \wedge e_{2}=-e_{2} e_{1} \equiv I_{C L(2)}=I \tag{3.11}
\end{equation*}
$$

The rule above imply $I^{2}=-1$ we may check that $C L(2)$ is closed for multiplication, and admits the basis ($1, \mathrm{e}_{1}, \mathrm{e}_{2}, I$). The general poly vector

$$
\text { expands as } A=A^{0} 1+A^{1} e_{1}+A^{2} e_{2}+A^{3} I
$$

The Euclidean plane R^{2} is naturally embedded (as vector space) in $C L(2)$ as $C L^{1}(2)$, the set of 1 -vector.

We have embedding isomorphism

Given a real vector space V, we note $C L(V)$ the complexified Clifford algebra $C \otimes C l(V)$ [17,Jean Gallier].

A case of interest for physics is when $V=R^{1,3}=M$, Minkowski vector space, and we study below the space time-algebra $C L(M)$. Its complexifiction $C L(M)=C L\left(R^{1,3}\right)$ is called the Dirac algebra.

More generally from complex algebra $C L(n)$ it is possible to extract the real Clifford algebra $C L(p, q)$ with $p+q=n$. To do so, we extract $R^{p, q}$ from C^{n}; as complex space, C admits the basis $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$.

We may see C as a real vector space with the basis $e_{1}, \ldots, e_{p}, i e_{p+1}, \ldots, i e_{p+q}$. Choosing n vectors in this list, we construct the real sub vectors space $R^{p, q}$, any element $a \in C L(n)$ may decomposed as $a=a_{r}+i a_{c}$, $a_{r}, a_{c} \in C L(p, q)$.

There are natural representations of $C L(d)$ on a (complex) vector space of dimension 2^{k}, with $k=\left[\frac{d}{2}\right]$. It is elements are called Dirac spinors. Element of $C L(d)$ are represented by matrices of order 2^{k}, i.e., elements of the algebra $M a t_{2 k}(C)$, acting as endomorphism[14, Warner].

This representation is faithful when d is even and non- faithful when d is odd.

The structure of a real Clifford algebra is determined by the dimension of the vector space and the signature of the metric, so that it is written $C L_{p, q}(R)$. It is expressed by its multiplication table. A matrix representation of Clifford algebra is an isomorphic algebra of matrices,(such matrix representation lead to the construction of spinor)

For p-form, it coincides with the usual Hodge duality of forms defined from the metric.

In 4-Dimensions, the Hodge duality transforms bivector into a bivector.
Any bivector can be decomposed in a self-dual and an anti- dual part:

$$
\begin{equation*}
B=B^{+}+B^{-}, * B=B^{+}-B^{-} \tag{3.8}
\end{equation*}
$$

A frame $\left(e_{i}\right)_{i=1 \ldots . n}$ for V defines a natural frame for ΛV. To define it, we consider all the finite sets of the form
$I \equiv\left\{i_{1}, \ldots, i_{k}\right\} \subset\{i, \ldots, n\}$ with $i_{1}<i_{2}<\cdots<i_{k}$.
We define the multi vectors $e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge \ldots \wedge e_{i_{k}}$ and $e_{\theta}=e_{0}=1$.
The multi vectors e_{I} provide a basis for the vectors space $\wedge \mathrm{V}$, and thus for C, with the orthographic "index I going from 1 to $2^{n "}$.

A multi vectors is expanded in this basis as

$$
\begin{equation*}
A=A^{I} e_{I} \equiv A_{0}+A^{i} e_{i}+A^{i j} e_{\{i j\}}+\cdots+A^{1,2, \ldots, n} e_{\{1,2, \ldots, n\}} \tag{3.9}
\end{equation*}
$$

Its components A^{I} may be seen as coordinates in C. Thus function on C may considered as function of the coordinates.

When the basis $\left(e_{i}\right)$ is on ($e_{i} \cdot e_{j}=\eta_{i j}= \pm \delta_{i j}$), it is so for the basis (e_{I}) of $C L(V)$, the scalar product of arbitrary multi vectors expands as

$$
\begin{equation*}
A \cdot B=\eta_{I J} A^{I} B^{J} \equiv A^{\circ} B^{\circ} \pm A^{i} B^{i} \pm A^{i j} B^{i j} \pm \ldots \ldots \pm A^{1,2, \ldots n} B^{1,2, \ldots ., n} \tag{3.10}
\end{equation*}
$$

Summation is assumed over all orthographic indices, and the \pm signs depend on the signature .

When the vector space is complex vector space, its Clifford algebra also complex.

السنة الرابعة - العدد السـابع - ربيع الأول/ربيع الثاني 1440هـ - ديسمبر 2018م

Up to multiplicative scalar, there is a unique $d-$ multi vector. To normalize, we choose an oriented on basis for V, and define
$I=\mathrm{e}_{1} \ldots \mathrm{e}_{\mathrm{d}}=\mathrm{e}_{1} \wedge \ldots \wedge \mathrm{e}_{\mathrm{d}}$ as the orientation operator.

It verifies $I^{2}=(-1)^{\frac{d(d-1)}{2}+s}$ depending on the dimension and on the signature of the vector space (V, g). The multiples of I are called the pseudo scalars center of $C L(V)$ is $C L^{0}(V)$ for d even, or $C L^{0}(V) \oplus C L^{d}(V)$ for d is odd.

The conjugation, anti automorphsim, is the composition of both: $\bar{R}=\left(R^{*}\right)^{T}$.

The scalar product of V is extended to $C L(V)$ as

$$
\begin{equation*}
g(A, B)=A-B=\left\langle A^{T} B\right\rangle_{0} \tag{3.6}
\end{equation*}
$$

Where $<\cdot>_{0}$ denotes the scalar part. It is bilinear. It reduces to zero for homogeneous multi vectors of different grades. It reduces to the usual product for scalars (grade 0), to the matrix product for 1 - vectors (grade 1).In general

$$
\begin{align*}
& A \cdot B=<A>_{0} \cdot_{0}+<A>_{1} \\
& _{1}+\cdots \cdot+<A>_{n} \cdot_{n} \tag{3.7}
\end{align*}
$$

The Hodge duality is defined as the operator

$$
\begin{aligned}
*: & \wedge^{p} \rightarrow \wedge^{n-p} \\
& A_{p} \rightarrow * A_{p} \\
\text { s.t } B_{p} \Lambda\left(* A_{P}\right)= & \left(B_{p} \cdot A_{p}\right) I, \quad \forall A_{P} \in \Lambda^{p}
\end{aligned}
$$

More formally, one may define $C L(V)$ as the quotient of the tensor algebra $T(V)$ over V by the ideal generated by the set $\{x \in V: x \otimes x-$ $\left.g(x, x)^{1}\right\}$. A poly vector of definite order is called homogeneous, in general, thus is not the case, and we define the projectors $<.>_{r}$ which project a poly vector onto its homogeneous part of grade r.

We call $C L^{k}(V)$ the vector space of poly vectors of grade k. As a vector space we have:

$$
\begin{equation*}
C L(V)=\bigotimes_{k=0}^{\infty} C L^{k}(V) \tag{3.3}
\end{equation*}
$$

As vector space, we have $C L^{0}(V) \equiv R$ which is thus seen as embedded in $\mathrm{CL}(V)$, as the mult vectors of grade 0(0-vectors) [17,Jean Gallier] .

The vector space V itself may be seen as embedded in $\mathrm{CL}(V)$, as $C L^{1}(V)$; its elements are the multi vectors of grade 1 or (1-vectors).

The addition of a scalar plus a grade on vector is called a Para vector. It can be expanded as $A=A^{0}+A^{i} e_{i}$ where $A^{0}=<A>_{0}$ and $A^{i} e_{i}=<A>$. The vector space of Para vectors is thus

$$
\begin{equation*}
R \oplus V \equiv C L^{0}(V) \oplus C L^{1}(V) \subset C L(V) \tag{3.4}
\end{equation*}
$$

We define also the even and odd subspaces of Clifford algebra C as the direct sum

Both have dimension 2^{d-1} and $C^{\text {even }}$ is a subalgebra of C.

السنة الرابعة - العدد السابع - ربيع الأول/ربيع الثاني 1440هـ - ديسمبر 2018م

The multi vectors belong to the vector space $\Lambda V \equiv \underset{p=0}{\otimes \rightarrow \Lambda^{p} V}$ all multi vectors, of dimension 2^{d} [8, Castro].

The wedge product is easily extended to all multivectors by linearity, associatively, distributivity and anti commutatively for the 1 - vectors

$$
\begin{gathered}
v \wedge w \wedge(v+w+x)=v \wedge w \wedge w+w \wedge w \wedge w+v \wedge w \wedge x \\
=(v \wedge v) \wedge w+v(w \wedge w)+v \wedge w \wedge x \\
=v \wedge w \wedge x
\end{gathered}
$$

Which is tri-vector if we assume v, w, x linearly independent.

(3) The Clifford Algebra:

We will assume an inner product in V :

$$
g: u, v \rightarrow g(u, v) \equiv u \cdot v
$$

one defines the Clifford(or geometrical) product of two vectors as

$$
\begin{equation*}
u v \equiv u \cdot v+u \wedge v \tag{3.1}
\end{equation*}
$$

In general this appears as the sum of a scalar (Poly vector of grade zero) plus a bi-vector (Poly vector of grade 2).

Scalar product

$$
\begin{equation*}
u \wedge v=\frac{u v-v u}{2} \tag{3.2}
\end{equation*}
$$

The Clifford algebra $C L(V)$ is defined as $\wedge V$, with the Clifford product $v, w \rightarrow v w$. As a vector space (but not as algebra) $C L(V)$ is isomorphic to the exterioralgebra $\wedge V$. Thus, its elements are the multi vectors defined over V [17,Jean Gallier].

$$
\begin{equation*}
\stackrel{\mathrm{p}}{\otimes} V=V \otimes V \otimes \ldots \otimes V \tag{2.1}
\end{equation*}
$$

Has also a vector space structure. It is elements, the tensors of ($0, p$), are sums of element of the form $v_{1} \otimes v_{2} \otimes \ldots \otimes v_{p}$.

To such a tensor, we associate its completely anti symmetric part

$$
\begin{align*}
& v_{1} \wedge v_{2} \wedge \ldots \wedge v_{p}=\operatorname{skew}\left[v_{1} \otimes v_{2} \otimes \ldots \otimes v_{p}\right]= \\
& \frac{\sum\left[i_{1}, i_{2}, \ldots, i_{p}\right] v_{i_{1}} \otimes v_{i_{2}} \otimes \ldots \otimes v_{i_{p}}}{p!} \tag{2.2}
\end{align*}
$$

Thus sum extends over all permutations $\left(p!=\sum\left(i_{1}, i_{2}, \ldots, i_{p}\right)\right.$). It called wedge (or external) product [10,Talpaert].

Such an external product is skew ($0, \mathrm{p}$) tensor called a p-multi vector (or p -vector). The sum of two p -multi-vector.

If V_{p} and V_{q} are p -vector and q -vector, we have

$$
\begin{equation*}
V_{p} \wedge V_{q}=(-1)^{p q} V_{q} \wedge V_{p} \tag{2.3}
\end{equation*}
$$

(2-2)The Exterior Algebra of Multi Vectors:-

The bi vectors from the vector space $\Lambda^{2}(M)$, of dimension $\frac{d(d-1)}{2}$. A simple bivector $\mathrm{B}=a \wedge b$ can be considered as the oriented triangle with vectors a and b as sides.

Then $<B \mid B>$ is-the oriented area of the triangle .
Now we extend the sum to multi vectors of different orders, up to d, like

$$
A_{0}+A_{1}+\cdots+A_{d}
$$

Where A_{P} is P-vector (the expansion stops at d).

السنة الرابعة - العدد السابع - ربيع الأول/ربيع الثاني 1440هـ - ديسمبر 2018م

products \quad provide ClIFFORD ALGEBRAS ONTO MINKOWSKI SPACE	
$\left(e_{A_{1}}\right) \otimes\left(e_{A_{2}}\right) \otimes \ldots \otimes\left(e_{A_{s}}\right) \otimes\left(e^{B_{1}}\right) \otimes\left(e^{B_{2}}\right) \otimes \ldots \otimes\left(e^{\mathrm{B} r}\right)$	for tensors.

By the direct sum operation, one defines the vector space of all tensors .

$$
\begin{equation*}
T V=\oplus_{s=0, r=0}^{\infty} T^{(s, r)} V \tag{1.2}
\end{equation*}
$$

The sets of all tensors of ($s, 0$) type, $\forall s$ (called covariant) and all tensors of ($0, r$) type $\forall r$ (called contravariant). An antisymmetric (contravariant) tensor of type ($0 ; \mathrm{p}$) will be called a p-vector (multi-vector). An antisymmetric (covariant) tensor of type ($p ; 0$) defines a p-form (multi form).

A vector space V, the anti symmetric part of tensor product of two vectors is defined as

$$
\begin{equation*}
v \wedge w=1 / 2(v \otimes w-w \otimes v) \tag{1.3}
\end{equation*}
$$

This is anti symmetric tensor of rank (0,2), also called a bivector[17,Jean Gallier]. The wedge product of two vectors defines bivectors, it generalization will lead to consider new objects called multivectors(= skew contravariant tensors). The wedge product is also defined for the dual V^{*}. The vectors of V^{*} are called the 1-form of V , the multivectors of V^{*} are called the multi-forms (=skew covariant tensors) of V . With the wedge product, multivectors from an algebra, the exterior (of multivectors) $\wedge V$ of V. Multi-forms form the exterior algebra of multi-forms $\wedge V^{*}$ on V .

(2) The wedge product:-

If V is a vector space of dimension d , the tensor product

- جاصصة القرآن الكريم وتأُميل اللولوم • عهادة البهث الهلهمي

Clifford Algebras onto MinnKowskī Space

المستخلص: هدفت هذه الورقة للبحث في جبر كلفرد لايجاد اطـار مفهوم لزمرة اللف المغزلي في الفضاء المبنكوسكي (الزمكان). عرفنا زمرة اللف المغزلي في زمرة فر عية معينة في وحدات الجبر ، كلفرد الجبر و ارتبط بالفضـاء النوني. وأيضا اذا كانت المغزلي النونية تبولوجيا أسهل من زمرة SO(n) وأسهل تربطاً.

Abstract: This paper aims to investigate Clifford algebras to get a understanding frame of spinor groups into MinKowski Space Time . The group $\operatorname{spin}(n)$ is called spinor group, is defined as a certain subgroup of units of an algebra, $C L_{n}$ the Clifford algebra and associated with R^{n}. Furthermore, for $n \geq 3$ the group $\operatorname{spin}(n)$ is topologically simpler than the group $S O(n)$. Indeed, for $n \geq 3$, the group $\operatorname{spin}(n)$ is simply connected whereas $S O(n)$ is not simply connected.

Keywords: Tensor Algebra, Clifford Algebra, Minkowssski Space, Hermitian Matrix, Weyl Spinor.

(1) Introduction:-

Multi vectors from the exterior algebra of V. Multiform from the exterior algebra of the dual vector space V^{*}. The definition of the vector space of tensors of type(s, r)

$$
\begin{equation*}
\mathrm{T}^{(s, r)}=\stackrel{s}{\otimes} V^{*} \stackrel{r}{\otimes} \boldsymbol{V} \tag{1.1}
\end{equation*}
$$

Vectors are $(0,1)$ tensors; 1-forms are $(1,0)$ tensors. An (s, r) tensors is linear operator or $v^{s} \otimes\left(v^{*}\right)^{r}$ [4,Bline]. A basis frame $\left(\mathrm{e}_{\mathrm{A}}\right)$ for V induces canonically a reciprocal basis(co frame) (e^{A}) for v^{*}. Their tensor

CLIFFORD ALGEBRAS ONTO MINKOWSKI SPACE

Dr. A-Tayeb Abdel-Gadir Abdel-Majid*

[^0]
[^0]: * Assistant Proffesor, Mathematics Section, Faculty of Education - University of Quran and Taseel of Sciences .

