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GENERALIZATION OF SUPERSTRUCTURE DOMAINS
‘ FOR LIGHT CONES IN LOBAGE EXTENDED SPACE

choosing & small enough , we conclude easily . Now, if we exchange
summations , it is sufficient to prove that , for fixed w , the integral

Z ] f dxdy
JJz €Bj,da(sm<1 QO™

is uniformly bounded . But it is bounded by [

n
€Bj.dqa(zw)<1 Q(y)"dxdy

which is a constant by invariance of the distance and the measure . It is
easy to deduce the atomic decomposition from the sampling theorem for
values of p for which the projection P, is bounded . More precisely , we
get the following theorem .
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pe(0,2(v—-1))

range p € (0, py) which reduces to ——

in the particular case

considered here (notice that 2 (Z—::) is the upper bound of the range of

p for with P;t is bounded on LY; P, has the same property in the general
case ) . The method given here may be generalized to all tube domains
over homogenous cones . Finally, Theorem (1.22)allows to solve a
Cartan B problem which we now describe . To simplify , we assume that
n = 3. We let w*denote the half-plane of the complex plane C .For all
p € (0, )it is easy to prove that the restriction f of F € AY given by
f(z1,32) = F(z1 — 32,0,31 + 3,) belongs to the Bergman space
AP ((m*)?) . This last space is the subspace of the space
LP((m*)?, (¥1,¥2)7"2dV (2, z,) ) consisting of holomorphic functions .
(It is called a restriction map since it is really given by a restriction when
dealing with the spherical cone instead of the future cone ) . Moreover ,
the restriction map

AD(Q) - AD(()?)

F o f

is continuous. We are interested in the range of p for which this map is
onto . It has been proved in [13] that it is the case when p €
[2(v — 1),2v — 1) Moreover , there exists a linear continuous extension
map .
Results :

(i)The operator P,;" is bounded on LY if and only if
2(v—1) <p< 2(v—1) -1 .

2v—n n—2
(i) If P, is bounded on LY ,then
n—2
2v
(iii) P, is bounded on LY for
n—2 2(v—1)
—2(v_1)<p< 1+—n—2 .
(v) The cone is called the Lorentz cone.
Conclusion :

<p<1l+

n—2°

The conclude , it is sufficient to show that the sum of the second term is
bounded by the left hand side multiplied by some independent constant C:
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choosing 6 small enough , we conclude easily . Now , if we exchange

summations , it is sufficient to prove that , for fixed w , the integral
dxdy

Z] fZ €Bj,dqa(zw)<1 QO™
is uniformly bounded . But it is bounded by [

n
€Bj.dqa(zw)<1 Q(y)"dxdy

which is a constant by invariance of the distance and the measure . It is
easy to deduce the atomic decomposition from the sampling theorem for
values of p for which the projection P, is bounded . More precisely , we
get the following theorem .

Theorem(1.22)[3]: Assume that P, is bounded on L’f, and let {Zj}jere a

& —lattice in Q. Then the following assertions hold .
(i) For every sequence ()lf)jeN such that
p v
il e(y) <o,
the series }.; 4; B, (Z, zj)Q”(yj) is convergent in AY . Moreover , its sum
F'satisfies the inequality
p v
||F||le; = CZjl;{jl Q(Yj) .
(ii) For & small enough , every function F € AY may be written as
F(z) =%;4Q%(y))B.(2.5,) ,
with
p v p
Zjl/ljl Q (J’j) = C||F||A5 ,
Proof :The sampling theorem allows to define a bounded operator from
AP into [ the space of sequences (Aj)jeN such that
p v
il e(y) <.
Using the conjugate exponent and duality ,we prove that its adjoint maps
¥ into AY . Since the adjoint of the linear form F F(zj) identifies
with scalar product with the Bergman kernel B, (-, z;).it prove (ii).
Moreover , when ¢ is small enough , we know from the second part of
the sampling theorem that A? identifies with a subspace of I} So (ii) is
obtained easily using the Hahn-Banach theorem . This theorem allows to
21+ 2(17—1)) . It had been
2(v—1) n—2

proved in [13] with another method in the more general case of all
symmetric Siegel domains of type Il and for two particular affine —

have atomic decomposition for p € (1 +

homogeneous , nonsymmetric Siegel domain of type /1 ,but for a
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@ = F@IP €87 [, (ol f(@IP S5, (19)

Let us now recall that , as in the case of the distance on the cone , one

can find Whitney decompositions of {1 . More precisely, the following
lemma , which is given in [10] , is the exact analogue of Lemma (1.3)
(and the same proof givens it ).
Lemma (1.20)[3]: There exists a positive integer N such that , given
0 < 8§ < 1, one can find a sequence of points {z]-} in Q with the property
that, if we call B; and B; the Bergman balls with center z;and
dqo —radius 6 and g respectively , then
(i) the balls Bj are pairwise disjoint ;
(ii) the balls B; cover Q and are almost disjoint in the sense that each
point belongs to at most Nof these balls .Following Coifman and
Rochberg , we say that the sequence {Z j} JeN given in the lemma above is
an § —lattice in {2 . We can now state the sampling theorem for functions
in AP,
Proposition (1.21)[3]: Let {z,} _ be a & — lattice in Q, with z; = x; +
iy;. Then , there exists a constant Cs such that , for f € AP one has
following inequality
1% v
Silf(z)l e(y) = C5||F||§5 ; (20)
Moreover , if § is small enough , the converse inequality
p v
1F 11y < 2C5 5,1f (5)7@()
is also valid .

Proof . The first inequality follows from the mean value inequality (18)
applied to the balls Bjand the fact that , on B;j,Q(y) is equivalent to

Q(yj) . For the second inequality , we write that
L If @ IPQy) dxdy
dxdy

< 5,00)" J, (IF @I +1f @ — £ (2)") o
<
o ilf ()" ()" +
_ dxdy
cpbP 2 fBj (fdn( [f ()PQw)” "dudv) JCOL

Tom conclude , it is sufficient to show that the sum of the second term is
bounded by the left hand side multiplied by some independent constant C:
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a , we use complex interpolation for the analytic family of operators ’T",; R
using the estimate for a = 0, and the estimate given in Proposition (1.11)
for a value of [ with a large real part . Let us remark that it is important ,
at this point, that norms increase only exponentially when imaginary part
of f tends =oo . This given by estimates of Lemma (1.9) and a careful
study of the constants. In this section , we recall some applications of the
boundedness of the Bergman projection . The first one is a direct one ,
and deals with duality . More precisely ,

Lemma (1.19)[5]: Let p,q € (1,) . If P, extends into a bounded

operator on L”’? | then the topological dual (Af,”q)'of AP? jdentifies
with Agl‘q,by means of the map:

Ge AL w Le(F) = [ F(2)G () Q* ™ (Imz)dV (3) .
Using Theorem (1.1) , we see that the topological dual of A?Y identifies

with Aglby means of the map (17) when
n—2 n—2
2o—1) P Z2w=1

Before going on , let us remark that the domain ) may also be identifies
to a group . More precisely , for (u,g) € R™ X H , we can define an
automorphism of Q by the action z — gz + u. Moreover , the product of
two such automorphisms has the same form , which allows to define the
product of two elements of R™ X H .This last one is see as a semi-direct
product. Its action on  is simply transitive.The measure Q (y) "dxdy is
invariant under the action R™ X H. Next, let dg denote the Bergman
distance on Q . It is invariant under the action of R™ X H and
equivalent to the Euclidean distance in a neighborhood of ie. From the
mean value inequality for holomorphic functions , we get that there exists
a constant C such that , for f holomorphic in Q,p >0,§ <1 and
do(ie,z) <6,

|f(l§)|p = cs™™ fdg(ig,z)<5|f(w)|p ‘Qi?vd)fl'
. dudv
|f(ie) — f(@)|" < co? Jaq(iewy<s f (@IP Gom

Using the action of R™ x H it follows that

_ dudv
f()IP <=C5™ fdg(z.w y<slf (@)I? Qw)n’
and , for do({, )

(18)
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(J lo@12as)
I o < 90
Q272

We refer to [5] for a proof of theorem (1.16) when p > 1 which is the
case that we use later . A key point , for the proof , is the density of
AZ N AP? into AP?. More
generally , we have
Lemma (1.17)[3]: For all p, g € [1, o) the intersection of any two space
Ag’zand Ay with 1 < p,q,r,s < oo , is dense in each of them . A new
proof of Theorem (1.16) , as well as new developments , are in progress
in a joint work with G. Garrigos . In particular , we prove in [8] that the
condition on p is critical (actually it is proved in [5] for p an even
integer). From this theorem, it is clear that the operator ©,_pg , for

positive [ > a , extend to bounded operator from Agf pp Onto

AP? . when p < MUsing Lemma (1.14) and the fact that Tp is

v+pBp n-2
bounded for § large enough as well as similar properties for the adjoint,
we obtain that Ty is bounded on Lﬁ'z whenever

n-—2-4a _ 1 _ 2v-—n

4(v—1) p+1 2(wv—-1) "
The necessity of these conditions can be proved using the fact that the
condition on p is critical in Theorem (1.16) If we interpolate these results
with the LPestimates coming from Proposition (1.11) , we obtain the next
proposition , which generalizes Part (iii) in Theorem (1.1) . To simplify
the statements , we restrict to non negative values of a .
Proposition (1.18)[3]: Let a = Rea be non negative. Then T, extends

into a bounded operator from L?'? into Lf,fap if the following inequalities

are satisfied

n—2 v—1 n—2

2q"  (p+1)’ 2

Proof . Assume thatp > 0 .Then we use interpolation between Lf,‘z

estimates given above , and Lﬂ’l or LV estimates given in Proposition
(1.11) . By duality, for a = 0, we get estimates when p < 2 . For general

[ #2018 yauss - 21440 3033 s/ 0531 gy - et s - it [0 19 ]
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n v—1
V>4
2q p
n v—1 n-—-2 v—1
v+a> + ———=a;
2q’ ' 2q p
n-2 v-1
14 14 —_— 0 -
2q p
Proof: Let us test the operator on the function

fx+iy) = Q(y)n_v)(lz—iék%(z)' By the mean value property of the

antiholomorphic functions T, f (g) = Q(z + ig)_v_a . We get the first
condition when using the necessary and sufficient conditions given in
Lemma(1.9) . We get the next one , using the same method for the adjoint
operator of T, . For the next conditions , we shall use a family of test
functions .For 6 + v —n > —1 and y > 2-1, we consider
Qw)®
Toy (@) = oro)”

Using (10) , we know that the Fourier transform , in the u —variable , of

f5, 1s equal to

Qe (el
up to a constant .For the same reasons, the Fourier transform of
. —-v—n .
Q(x+i(y +v)) is equal to
e—f-(y+v)Q (E)v+a—g

Using the fact that T, acts as a convolution operator in the x —variable ,
and the identity

fr‘ e—zf-vQ(U)6+v—ndv — CQ(E)—6—1J+%‘
we obtain that
>—a—y+6

Tofsy = C (—Q (x+i(y+e))

Then f5, belongs to LP?if and only if y > nT_l ,60 > —

v—m+1
p+1

— 1 and

y—46> % + :;4-1 — 1, a while T, f5, belongs to Y7 if and only if

y+a—5>nT_1, and y—6>%+vr%1—1 . The last one is obtained

when using the same test functions and the adjoint operator of T, . Let us
now consider sufficient conditions. They are based on the following

characterization of the space A’Z'Z .
Theorem (1.16)[3]: For —2 <p <
Aﬁ’zif and only

[ 18 ][ seteltjpna A Jo e S Al ]
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Laplace transform of e%%Qv*@(&).So, using the polarization of (13) , we
can write T, (F)(%) as the scalar product , in L% ,(T"), of g(&) and
elZSQv*ra(§). We recognize the definition of the Laplace transform of
Q%g , which we wanted to find . The constants have been chosen so that
we get the identity for &« = 0, and P, identifies with T = T,. Moreover ,
the fact that the restriction of T,to A% gives an isometry (up to a constant
) follows directly from (16) and (13) .
The following lemma is an easy consequence of the previous identity .
We note 0, the restriction of T, to A2 ,which , by (16) , is given by the
multiplication by Q%(&) of the spectral function . It extends clearly to a
well defined operator on all spaces A7 . Let us remark that , for a a
positive integer , it coincides with powers of the D' Alembert operator .
This one had been the only case considered in [5] . We have
Lemma (1.14)[3]: The following identities are valid .

OgoB, =Ty, OppoTpg=T,.
Proof . Let T, maps L? into itself , and its adjoint maps clearly L% into
AZ since its kernel is holomorphic. It follows that P, o Ty = T, , which
gives the first identity. The second one follows from the first one , using
the fact thatP, = @_g o Tg = O_, ° T, . At this point , let us remark that
we have chosen to fix parameter v once for all , and defined the analytic
family T, in terms of the weighted measure Q(y)" "dxdy . Up to
multiplication by Q(y)! , the adjoint operator of T, belongs to the
analytic family related to the weighted measure Q(y)V " "dxdy (and has
parameter @ — a in this new family ). So, from LP estimates for the
analytic families T, related to all parameters v , we get also weighted L
inequalities for the analytic family T, related to a fixed parameter v. We
have already found the best estimates for the operators T, in the last
section . When there is an estimate for T, , the same estimate is valid for
the operators T, (with a of real part a). We are now interested in
estimates for T,, which do not extend to the positive operator T, . Let us
first give necessary condition (ii) in Theorem (1.1) .To simplify the
statements , we restrict to non negative values of a .
Proposition (1.15)[3]: Let a = Rea be non negative. Assume that
T, extends into a bounded operator from L!?and Lg'fap.Then , the
following conditions are satisfied

[ #2018 yauss - 21440 3033 ars/ 0531 gy - et s - i aatt [ 17 ]
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Let us go back to the general Laplace transforms

Lg(z) = [.e% (&) %4
Q)2

Assume that g is in L2,(T) = L? (F,Q(y)_”_%dy).Using first the

Plancherel formula for the L? norm in the x variable , then (10) , it is easy

to compute the norm of L g in in fact the converse is also valid , and one
has the following Paley-Wiener type theorem( [12]or[13]):
Proposition(1.12)[15]: A function F on Q is in A2 ifand only if F = L g,
with g € L2 ,(T") . Moreover ,

_n 3n_
IFIZ, = 2722m) 7T (v = 2)T(w — n + DllglZ ) - (13)

It is easy to deduce the Bergman kernel from such a proposition . We
claim that

B, (z,w) = c,(=Q)"(z — @), (14)
with
¢, =22 Qm) T (v+1-2) [F(v = Hr@w —n+ D] .

To prove it , let us consider the operator

Tf(z) =cy fﬂ(—Q)_”(z — @) f (w)QW) " "dudv . We use the notations
z=x+1iy and w = u + iv. We prove now that T coincides with P, .
Indeed , we know from Proposition (1.11)that Tis a bounded operator L2
. Moreover it is clearly self-adjoint . So it is sufficient to prove that it
coincides with the identity on A2 .We shall prove a more general
statement, which applies to a whole analytic family of operators . For

a=a+ib,witha > — ,we consider the operator

Tof (3) = ¢y [((—Q) V"% (z — @) f (@)Q (W)Y "dudv . (15)

From proposition (1.11) we know that T,is a bounded operator from L? to

v—n+1

L%, 54 - We claim the following .
Proposition (1.13)[3]: For a > —

v—n+1

,the operator T, defines , up to a

constant , an isometry of A2 ontoAZ,,, . Moreover , for F = L g € A2,
the function T, (F) may be written as

To(F) = BaL (Q%g) . (16)
Proof . Let us show (16) . For F = L g € A% and z € C™, we can see
T,F(z) as the scalar product of F with the function

(—Q) "% (.—%) in A2 .We know from (10) that the second one is the

c=re- A Jo e S Al ]
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Let remark that , as a consequence , we get part (i) of Theorem(1.1)
fora = 0.

The lower bound for p does not depend on a , while the upper bound is co
when a > %— 1.

Proof : Let us first show the sufficient condition . Clearly , T, acts as
convolution operator in the x,u variable . Moreover , the norm of this
convolution operator acting in L9 (IR™) is bounded by the L! norm of the
kernel|Q(x +i(y + v))|_v_ain the x variable , which by Lemma (1.9) is
bounded by cQ(y + v) —v-a+y .Using also Minkowski inequality , we see
that

1
(S T £ Cx + i9)19dx)7 < ¢ [LQ(y + v) ™" 2d,
By assumption , F belongs to LZ—E () , and has norm equal to the norm
2

of f in LP?. To conclude , we use the sufficient condition in Lemma
(2.1.6) to prove that the operator of kernel Q(y +v)™V"%*z  maps
Lﬁ_;(l") into Li_%mp(l") under the assumptions on a, v, p. Let us now

show the necessary condition. We test the operator T, on functions f(x +
iy) = X|xj<2(x)g(y), with g a positive function supported in the
intersection of the cone with the Euclidean ball of radius 1/4 centered at
0 . Using Lemma (1.10), it follows that for x, y such that |x|, |y| < 1/4,
one has the following inequality

Ti (e +y) 2 ¢ QU + )" g ()Q)" dv, .
By assumption , there exists a constant C independent of &, such that

fyerrie (Jr @ + )™ g )@@y mdv ) (v + vyvrer

< € fLgPQ)* dv.
By homogeneity of the kernel, we can replace the constant 1/4 by any
positive constants : for every positive function on , we have the inequality

—v—a+n — p —-n
Jyeriyien (Jr QO + 1) g(1) Q)Y dv ) Q)P dy
< Cfver’viNg(v)pQ(v)”_”dv.
Using the density of compactly supported functions, we get the same
inequality without any bound on integrals . The necessary condition of

the proposition is then a consequence of the necessary condition in
Lemma (1.6).

[ #2018 o - 1440 3033 ars/ 0531 gy - et s - i aatt [ 15 ]
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n—1 n v—1
a > max{ — + —} .
" 2q 14

Moreover ,

Fell g < Caexp(rlb Q)™ 3a*%
Proof : Write J,(y)as the norm in the x variable of the
function(— Q)_%(x +iy) . By (10) and Plancherel's formula , it is finite

if and only if e ny(E) 1s in the space L?(T") .This shows (i), using
Lemma (1.5). Property (ii) follows also from Lemma (1.5),using the fact
that , since the principal argument of —Q is contained is contained in the
interval (—m, +7), we have the inequality

[((—Q) *(z+it)] < |(—Q) %(z + it)|exp(m|b]). In fact , one can write
a more precise bound below for integrals of |Q(x + iy)|~™%. It will be
used in the proof necessity for P;t in Theorem (1.1) .

Lemma (1.10)[3]: For ¢« > n — 1, there exists a constant C such that , for
everyy € I' with |y| < 1/2 , one has

Jipj<alQCx + )| 7%dx = CQ() ¥
Proof : The proof given here is different from the proof given in [4] . We
know from Lemma (1.4) that it is sufficient to prove the inequality
[lQ(x + iy)|~%dx = CQ(y) ™.
where B is the ball of d —radius § which is centered in y. Now, we can
use the fact that Q is almost constant on this ball , which allows to write
that the left hand side is equivalent to

Q)2 Jle(x +iy)|~ .
y)2

Using the action of H and the formula of Change of variable for Q, we

see that this last quantity is equal Q(y)_‘”g multiplied by the same
integral when computed for y = e .This last factor is clearly a positive .
Let us consider the operator T; defined by

T f(z) = [,|0(z — @) |7 f(w)Q(v)" "dudv, (12)
where we have used the notation w = u + it .The next proposition gives
the necessary and sufficient so that T, is bounded from L7 to Lf,fp a -

qu

Proposition (1.11)[3]:The operator is a bounded operator from B to

2
L if only if the following conditions are satisfied

a >

n—1-v a n—2-2a 1 2v—n

v—n+1’ 2(v—-1) P 2(wv—1)"

,  max {—

c=re A Jo e S Al ]
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Here, for £ € C"* and ¢ € R" ,wenote 3.& = 5,&; + -+ 3,&,.
The Laplace transform is well defined and holomorphic in the tube
domain Q under integrability conditions on g.Moreover, the function g is
uniquely defined knowing £ g, and is called the spectral function of L g .
Let us start with the fundamental example given by powers of Q. More
precisely , we still denote by Q.the holomorphic polynomial on C™given
by
Q@) =37 —3{ —— 251
The fact that arbitrary powers of Q are well defined is given by the
following elementary lemma .
Lemma (1.7)[3]: The image of Q under the function —Q (%) is contained
in C\(—oo,0] and is strictly positive on il', Also , fory €T, |Q(x +
iy)] = Q(y). Hence , fora € C, we shall denote by (—Q)%(z) the
determination of the & —th power which corresponds to the determination
of the logarithm that is real on iI'. Under restrictions on the parameter o,
these functions may be written as Laplace transforms of different powers
of the function Q restricted to the cone .The following lemma is proved in
[12] in a more general setting (one uses the same coordinates as in the
proof of Lemma(1.5)).
Lemma (2.8)[15]: The integral
iy.& n_d¢
Jre?sQ(®) pye 5
converges for y € I' if and only if Rea > §—1. For these values of a and

for z, the following identity holds :
fre®Q()* 25 = 222l (a =+ 1) (—Q ™ (2).  (10)
Q) 2

It means that the holomorphic function(—Q)~“ is the Laplace transform
of the function Q%on the cone . Then the next lemma gives necessary and
sufficient conditions on the power a for the function to belong to the
space A7,
Lemma (1.9)[3]: Leta = a + ib € C. Then
(i) the integral

Ja@) = [l @Q(x + iy)|~%dx (11)
converges if and only if a>n—1 and , in this case J,(y) =
CaQ ()2,
(ii) for t € T', the function F,(z) = (—Q)~%(z + it) belong to AV if
and only if

[ #2018 o - 21440 3033 ars/ 0531 gy - et st - st aatt [ 13 ]
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The following lemma given continuity properties of Sig41),3+1) 1N
LP*L() = LPTY(T, dv) .

Lemma (1.6)[3]:The operator Scy41),p+1) 1S a bounded operator in
LP*1(T) if and only if then following conditions hold:

n+2((f+1)) n+2(a+1)

2n—2 2n—2

Proof : We show the necessary conditions. If we take the characteristic
function of the ball of d —radius (6§ + 1) centered at e as a test function
f, we know from Lemma(l.2) that Q(v)and Q(y + v) are almost
constant on the support of f. So Sy41),8+1), 1S bounded in LP*1 the
function Q)@ *DQ(y + v)_(g+“+ﬁ+2) is in LP*1(y). Using the
previous lemma , this gives half of the conditions . The two other ones are

1 1

obtained by the same method , using the fact that the adjoint of
Sta+1),(p+1) 18 bounded in L@+’ (y).,with (p + 1)’ the conjugate
exponent . To show the sufficient conditions , we use Schurs lemma , and
test on functions @(v) = L(¥)Y*1Qw)¥*D’. More precisely , it is
sufficient to show that it is possible to choose (y + 1)and (y + 1)’ so
that one has the two inequalities

Q@D Q) B+
r Q(y+v)g+a+ﬁ+2
Q@) B+

r Q(y+v)§+a+ﬁ+2
We use again Lemma (1.5) to conclude. As we have done in the

PPV dv < Cop ()P’

p(PTdv < Cop(v)PH!

introduction for the whole domain, we use the invariant measure to define
the weighted spaces ,and note LY (I)the space LP (F, Q”_%dv).The
unweighted case corresponds to the value v = 2.

Using Lemma (1.6), we get necessary and sufficient conditions for the
boundedness of the operator S, gin the space LY (I") when we write that

n
Q)P "*2

QUy+1)z+eHh
has its p —th power integrable in the y variable , and its p’ —th power
integrable in the v variable .

Let us introduce the Laplace transform of a function g defined on I as

L{g(@)} = [eZEg(®) =5,
Q(8)z

[ 12 ][ seteltjpna A Jo e S Al ]
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T he eigenvalues of (a + 1)Z3, which are different from 1 are equal to

e*?t. But
Aretrt > T XnTXa ! =1
TxZ—xixp+x; (xp,+x)%2 7 2

The aim is to give LPcontinuity properties for a family of operators on
the cone itself which are closely related to the Bergman projection . Let
us first consider integrability properties of products of powers of L
and Q.

Lemma (1.5)[3]: Let (8 + 1), (y + 1), (u + 1) be real parameters. For
y € I', the integral

Ig+0,+0.wrn ) = [LLOEDQ(y + )TV Q) Vdv .

is convergent if and only if the following conditions hold:

u>-2, Yy +u< n4, B+u> n4, LHy+u<-—-n—4.

In this case, there is a positive constant C(g41),,, such that for every
terl:

Ip+1), 41t ) = Ca iy (e LN PV Q)Y TH*2+2,

Proof : We give the proof for completeness since details are not given in
[5]. Using the action of H, it is sufficient to assume thaty = e .We
consider the change of coordinates form v € I' defined by

Uy = vy — Vg, V1 =Vn =V — 7 ——

and v’ = (Ts, -+, Uy) = (vy,-++,v,) . It follows from an elementary
computation that the determinant of the Jacobean is constant , that
Q(U) - ﬁlﬁz and

U (U1 + (0, + 1)
After a first integration in v’, we are linked to cons1der the integral

B+u+ 32 y+22
fU1>0,v2>0 L1 (V1 + 1) dvld v,

The necessary and sufficient conditions follow at once . Let us remark

(v+e)—(v1+1) (v2+1)<1+ |v’| )

that such coordinates exist in a more general setting , as proved in [26].
For positive (a + 1), (8 + 1), let us now consider the integral operators
Sa,p Which are defined, on cone I by

Q@) F+1
Sarn,@+n Q) = f PRI f(v)dv. (9)
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at most N points y; which are at d — distance less than 6 + 1 of e , and
5+1)
2

such that the balls of d — radius centered at e the Euclidean

distance and the invariant distance are comparable . So the existence
of Nfollows elementary considerations on the volume. Let us remark
that one can easily compute the volume , for the Lebesgue measure, of
the balls B; or B;. It is clearly a constant (depending only on(§ + 1)) ,

when the volume is taken in terms of the invariant measure Q(y)~ gdy
. Since Q is almost constant on each ball , we have the following
property

Vol(Bj) zVol(Bj') =~ Q(y)g ©))
Such a decomposition of the cone I into almost disjoint balls can be seen
as the analog of a Whitney decomposition .We will also have to compare
the usual Euclidean balls and the balls related to the metric d, we will
need the following lemma .
Lemma (1.4)[3]: There exists a constant & > —1 such that ,for y €T
with |y| < 1/2, the ball B of d —radius & which is centered in y is
contained in the set {x € I': |x| < 1}.
Proof : We give the proof in detail ,since it is not contained in [5]. It is

sufficient to show that , for x € I'such that|x| < 1, one has the

2
inequality (¢ + 1,§ + 1), = %

inequality , and conclude . If the ball B of d —radius ( & + 1) which is
centered in y is not contained in the set {x € I': [x| < 1 },it means that
there exists a geodesic ¢ which maps 0 into some point x with |x| = 1,
such that |¢p(t)| < 1 for t in the interval (0,1) and such that
1 14 14 l
Jo (@' ), " ()% ydt < (5 +1) .

Using the inequality between the infinitesimal metrics ,we see that the

Euclidean length of ¢ is less than or equal to/2( & + 1) .So it is

sufficient to take § = 1/4 to get a contradiction . To show the inequality

between the infinitesimal metrics ,we use the invariance of both sides

when rotating in the n — 1 first variables. It allows us to assume that

x = (x4,0,...,0,x,,), with x; > 0. According to (7), we can write

x =A(a+ 1).e,with 2 = (x2 — xlz)% and ,Then
(E+LE+1)=272¢+ 1D (a+ D5 E + D).

Indeed , let us take for granted this

[ 10 ][»qw‘;m pu\wbmﬁ\oﬂ‘)ﬁ\@\ei&é ]
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where

1 V2
A=0Q()s; t =22 - __1 ( : ) o

Yn—vy1’ Yn—Y1 y. ) 1
n—
So I' may be identified with H. In this identified , the measure Q(y) _gdy
on I' which is invariant under the action of H , gives the Haar measure .
The quadratic form Q(y) and the linear functional L(y) = y, — y; have
invariance properties under the action of g = An;a; € H:

2 1
Q(gy) = (detg)mQ(y)., L(gy) = (detg)re "L(y).
It is possible to define an H —invariant Riemannian metric d on I' as

follows : ify = ge € I' with g € H, and &,n are tangent vectors at y,
we set
&my =979 "n-

By construction , the metric d is invariant under the action of H . It is
easy to see that it is also invariant under the whole group G(I") .This
metric can be used to see that I' is an almost disjoint of sets on which Q
is basically constant .This follows from the two following lemmas.
Lemma(1.2)[ 3]: Givend +1 >0 and ko > O integer , there isy > 0
such that if B4, ..., Bgx are balls in ' of d —radius smaller than § + 1 ,
with k < kg then ,for y,y’' € B, + -+ By

Y ') < Q) <y,
We refer to [5] for its proof .
Lemma(1.3)[3]: There is a constant N such that , given—1 < § < 0, one
can find a sequence of points {y} in I' with the property that , if we call

B; and Bj the balls with center y; and d —radius § + 1 and %

respectively , then

(i) the balls B/ are pair wise disjoint;

(i) the balls Bj cover I' and are almost disjoint in the sense that each
point .

Proof : We take {yj} a maximal subset of I' (under inclusion ) among
those with the property that their elements are distant at least § + 1 one
from the other . Clearly the balls BJf are disjoint .If the B; were not a
covering of I' ,this would contradict the maximality of the sequence .
Let us show the finite overlapping property. We want to show that , for
y €T , there are at most N points y; at d —distance less than § + 1 of
y . By invariance of the distance , we may as well show that there are

[ #2018 yauss - 1440 3033 ars/ 0531 gy - et s - i aatt [0 9 ]
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that the Bergman projection on LP*1, which is not the case in general
Nevertheless their results are exact with additional assumptions , which
we try to choose as weak as possible .Our proof for atomic decomposition
is new , and can be generalized to all tube domains over homogeneous
cones . The forward light cone I' is a symmetric cone. Such cones have
been studied by Gindikin in [11] . Nowadays , the book of Faraut and
Koranyi [12] is a very good reference for their study . There , the cone
I is called the Lorentz cone .

When we say that it is a symmetric cone , we mean that it satisfies
the two properties :
(i) it is self-dual , which means that , for x € R", the scalar product x,y
is strictly positive for every y € I if and only if x liesin I ;
(i) it is homogeneous , which means that the subgroup G(I') of
GL(n) leaving T invariant acts transitively on I' . Here each element g €
G (T)whichbelongs to the connected component of the identity may be
written as Ag, ,with A > 0 and g, in the Lorentz group special orthogonal
group (n — 1,1) , that is the group of n X n matrices of determinant 1
which preserve the quadratic form Q. It may be useful to know that
I" identifies to a subgroup of R, X SO (special orthogonal group) (n —
1,1) (remember that R, may also be considered as a group). More
precisely, let us consider the two following subgroups of SO(n — 1,1)
(they appear in the Iwasawa decomposition of the connected component
of the identity SO(n — 1,1)) :
(ii1) the subgroup A consisting of the matrices

cosht 0 sinht
at— - ( O ITl—Z 0 )

sinht 0 cosht

witht € R ;
(iv)the subgroup N consisting of the matrices
_wZ ¢ w2
1—-=- v 2
n, = v L, > —v
[l t |2
- T — v 1+ VT

with v € R"2 .

Then , it can be shown that H = RTNA is a group , which acts simply
transitively on I' . If e = (0, ...,0,1) then each y € I" can be written in a
unique way as y = An,(a + 1).e

FpIc=re A o5 S0 A2l
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Theorem (1.1).Property (ii) is elementary and does not depend on
sophisticated counter-examples . One may conjecture that the range of
p in (ii) is too large .We have been able to show that it is indeed the case
when n = 3 and v < 5/2 . For these values , the interval in (ii) may be
replaced by the smaller interval

1+ 4;_5 < p < 4(v — 1) .We do not the proof here ,first because of its

difficulty, and next because of the incompleteness of such an

improvement . Let us remark that , nevertheless , when we consider the
unwieghted case v = n, the result given in (iii) is asymptotically the
best one for n tending to co .On the other hand , as we shall see , the
Szego projection corresponds to v = % For this wvalue (which is not in

the range allowed in the statement of the theorem ), the closure of the
interval given in (iii) reduces to {2} . In this case , it has been proved by
Fefferman unbounded for p # 2 (see [6]and [7]) .This gives an
argument to conjecture that the interval given in (iii) coincides with
the range of p for which the weighted Bergman projection is bounded .
On the other hand , we did not find any possibility to adapt the counter-
example in [6] for the Bergman projection .We generalize the results
to all tube domains over symmetric cones in joint work with G. Garrigos
in preparation [8]. It has already been partly done for (i) and (ii) in [9]
. We will present here the results in a somewhat different way compared
to [5] . First , the present section is organized so that all parts of the
theorem are showed in the same way . In particular ,we adopt the same
notations and kind of proof for (i) and (iii) . Secondly, an easy
generalization of the proofs ,which we perform here, allows to get
continuity properties when the Bergman projection P, is replaced by the
operator whose kernel is some complex power a of the Bergman kernel
B, (z, w), with constant which increase exponentially with the imaginary
part of (a + 1) . Let us recall that consideration of an analytic family of
operator is necessary when one wants to apply complex interpolation for
different values of v. With this new point of view we do not need to refer
to the D Alembert operator . In the last section, we give some
applications for the Bergman spaces AD: duality, sampling theorems ,
atomic decomposition , and restriction theorems . Let us recall that this
kind of properties had been stated for the first time in the fundamental
section of Coifman and Rochberg [10] . Unfortunately they had assumed
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phenomenon , compared to all cases for which the Bergman projection
is known to satisfy LP*1 estimates so ,while the proof of (i) uses
basically the same methods as in the upper half-plane ,that is Schur's
Lemma which gives continuity properties for positive kernels , we must
take advantage of the oscillations of the Bergman kernel to get the
larger range of values of P given in (iii) ,We use two main ideas to
do it in [5]. The first one is to show that LP continuity is equivalent to
some Hardy type inequality in the Bergman classes .The usual derivative
,which is for the classical Hardy inequality in the upper half-plane ,is
replaced by the D'Alembert operator (or wave operator ) given by
0 =Q(@+1D)=—-@+1DF ——@+DZ_, +@+DZ,. &)
It is a remarkable property that LP continuity for P,with 2 < p < oo is
equivalent to the fact that the D'Alembert operator satisfies the inequality
1FlLg < Clla™Fllp, (©)

for m large enough. We are then linked to only consider holomorphic
function F , which may be written as Laplace transforms of functions
g defined on the cone I' .Unfortunately , as in the classical case of the
upper-half plane , there is no easy characterization of the fact that F
belongs to AD in terms of g . This last difficulty is the reason for a
further generalization .If we write z = x + iy ,we identify a function
f(2) on Q with a function of two variables x € R™ and y €T, and we
note again f(x + iy ) for simplification .The measure dV(z) is dxdy.
Let us define LV =[P (F, Q) "dy, L1(R™, dx)) as the space of
functions f(x+iy)on Q such that |f|I7pq = pr,q(pr‘qlf(x +

iy)|4 dx)p/qQ(y)”_"dy is finite (with the obvious modification when
p = ) . As before we call A7 we get the previous weighted Bergman
spaces . Let us remark that , in the classical case of the upper half-plane
, AD'? identifies with a closed subspace of some Besov space at the
boundary .We will consider continuity properties of P, for the whole
range of space L}’? . The same equivalent formulation (6) is valid in this
context. What is new for these space is the fact that we are able to give
a complete answer for q = 2 .Indeed , the functions F € AY%are
completely characterized though their Laplace transforms , and we have
,Jor 0 <p < p, for some critical index P,, a Littlewood-Paley type

characterization of the space AY?. Let us add some comments on

EpIc=re A o5 S0 A2l
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lhe condition on v corresponds to the integrability of the weight, When
it is not satisfied , the Bergman space A2 is reduced to {0}. Up to small
changes , parts (i) and (ii) have been proved in [4] . Let us point out
that results of [4] are given for the spherical cone which is defined in
the same way , with Q and L replaced by Q(y) = y1 v, — (2 + --- +
vZ_1) , L(y) = y;. An elementary change of variable allows to pass
from one to the other .The usual coordinates of the spherical cone have
the advantage that direct computations are easy to perform , and most
proofs in [4] are done by hand .We do not give here these elementary
proofs but replace them by more sophisticated ones , using the geometry
of the cone . They may be generalized more easily to all tube domains
over symmetric cones .Moreover , only the unweighted case is considered
in[4] , but everything generalizes to the weighted case .Let us specially
mention the transfer principle , from which it follows that Bergman
projections are bounded in the same time for both domains . There are
two ingredients for its proof .One is the basic identity

Bg(z,w) = Bq,(®(2), 2(W))Jo (2)]o W), 3)
where @ is the holomorphism which maps € onto Q and J4 stands for the
Jacobin of & fact that .The other one is the J4 is locally bounded far
from its zeroes .Using the same identity for the weights ,one gets easily
the weighted version of (3):

Bg,(z,w) = BQ(CD(Z),CI)(W))]@(Z)%]CD(W)%. From this , it is easy to
that the transfer principle is also wvalid for the weighted Bergman
projections . So, from now will only consider the unbounded domain Q.
The weigthed Bergman kernel of ) can be written explicitly in terms of
the complexified quadratic form Q as
B,(z,w) = c,(—Q) " (z — w). 4

In particular , on the diagonal , if we use the notation z = x + iy, B(z, z)
is equal, up to a constant , to Q (y) ™.So the weights B, (z, Z)l_% depend
only of y , and are equal , up to constants , to Q(y)V™™ . We shall omit
the constants from now on . Let us now give some comments on
which is new , and has been obtained in a joint work with Marco
Peloso and Fulvio Ricci '.When considering simultaneously (i) and (iii)
,we see that there are values of p for which the Bergman projection P,
is bounded while the positive operator B, is not .This is a new
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F'={y=0y Y1) ER":Q(y) >0,L(y) > 0} €Y)
Here Q is the quadratic from Q(y) = —y? + vy ..— y2_, + y2_, + y2,
and Q is the linear form L(y) = —y; + y,. We could as well have given
Vo > 0 as a second condition .We introduce the linear form L right now
since it will play a role later .The fact that the cone is defined by two
inequalities is related to its rank ,which is equal to 2. The domain € is an
affine-homogeneous symmetric tube domain known as the Lie the ball O
of C™ .This last one is defined by

ﬁ:{ze cm: |37z < 1,1 = 20z + |27 22| >o} ()

In Elie Cartans classification of bounded symmetric domains [1], the
lie balls are the representative of class IV (according to Huas numbering
[2D.

It turns out that, even if we are only interested in LP*? continuity of the
Bergman projection P (when D is Q or Q) , it is relevant to consider
weighted projections as well .We define L? as the Lebesgue space for the
weighted measure B(z, 2)1_% dV (z) . The unweighted case corresponds
to the value v = n .Next we define the weighted Bergman spaces Al ,
and the orthogonal projection P, of L? onto AY .Moreover ,we adopt the
notation B,, for the corresponding weighted Bergman kernel ,and we call
P, the positive integral operator defined by

P f(z) = f B, (2, )| f(W)B(w, W)~ Sdv(w).
D

We can now state the LP continuity results for the Bergman projections
of the two domains that we consider .

Keyword : , Bergman projections , Laplace transforms , Cone ,
Operator , Bergman space , D'Alembert operator , Lebesgue measure ,
Decomposition

Theorem (1.1)[3]: For the domains Q and Q ,and for v > n — 1, one has

the following properties .

(i) The operator P; is bounded on L? if and only if % <p<

2(v—1)
n-2
ii) If P, is bounded on I?, then 1 +22<p <1+ 22,
v v 2v P n—2
n—2 2(v—1)
20— <p<1l+ .

n—2

iii) P, is bounded on L? for 1 +
v
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Abstract :
In this paper , shall concentrate on new LP*? continuity properties for an
analytic family of operations include the Bergman projection of the tube
domains over the of light cone . These last results extend to the bounded
realization of tube domains under consideration .
 Galiiu
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Introduction :

For D a domain in C™ and p + 1 € (0,»],we denote by LP*! the
Lebesgue spaces LP*1(D,dV)  (where dV stands for the Lebesgue
measure on C") , and by AP*! the Bergman space, consisting of
holomorphic functions on D which belong to LP*! It is well known, and
elementary ,that AP*! is a closed subspace of LP*! .The Bergman
projection P is the orthogonal projection of L? on A% .1t is given by

Pf(z) = f B(z, w)f (w)dV (w)

D
where B(z,w)is the Bergman kernel of D .We write Bp(z,w) it is

necessary for comprehension ,but do not specify the domain when there
is no ambiguity . Continuity properties of the Bergman projection have
been widely studied when D is a pseudo-convex domain with smooth
boundary . Here we deal with other kinds of domains ,which are
simplest ones among the Siegel domains of type 11 of rank larger

than one , and consider LP*!

—continuity properties . It turns out that
the range of p + 1 for which P + 1 extends to a bounded operator on
LP*1 is unknown ,and we give partial results in this direction. We will
focus our attention on two specific domains : the first one is the complex
tube domain Q = R" + il € C", n > 3, where I'is the forward light

cone given by
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